精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,证明:

(Ⅲ)求证:对任意正整数,都有 (其中为自然对数的底数).

【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析

【解析】

)先求,再对 进行讨论即可.

)由题知即证,构造新函数设,利用导数只需即得证.

)由(Ⅱ)知,累加作和即得证.

)易得,函数

①当时,,所以上单调递增

②当时,令,解得

时,,所以

所以上单调递减;

时,,所以

所以上单调递增.

综上,当时,函数上单调递增;

时,函数上单调递减,在上单调递增.

)当 时,.

要证明

即证,即. .

得,.

时,

时,.

所以为极大值点,也为最大值点

所以.

.

.

)由()知,.

所以

,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,已知向量,又点.

(1)若,且,求向量

(2)若向量与向量共线,常数,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.

(1)求a的值;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆E)过点,其心率等于.

1)求椭圆E的标准方程;

2)若AB分别是椭圆E的左,右顶点,动点M满足,且椭圆E于点P.

①求证:为定值:

②设与以为直径的圆的另一交点为Q,求证:直线经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的内切球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据指令,机器人在平面上能完成下列动作:如图,先从原点O沿正东偏北方向行走一段时间后,再向正北方向行走一段时间,但何时改变方向不定.假定机器人行走速度为10m/min,则机器人行走2min时的可能落点区域的面积是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数在点处的切线方程;

2)若函数有两个不同极值点,求实数的取值范围;

3)当时,求证:对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社会上有人认为在机动车驾驶技术上,男性优于女性,这是真的么?某社会调查机构与交警合作随机统计了经常开车的100名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:

总计

40

35

75

15

10

25

总计

55

45

100

附:

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

据此表,可得( .

A.认为机动车驾驶技术与性别有关的可靠性不足

B.认为机动车驾驶技术与性别有关的可靠性超过

C.认为机动车驾驶技术与性别有关的可靠性超过

D.认为机动车驾驶技术与性别有关的可靠性超过

查看答案和解析>>

同步练习册答案