精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA=PB=AB=
2
PC=
2
AC=
2
BC

(Ⅰ)求证:PA⊥BC; 
(Ⅱ)求二面角P-AB-C所成角的余弦值.
分析:(Ⅰ)【法一】取PA中点M,连接CM、BM,利用等腰三角形的性质,可得CM⊥PA,BM⊥PA,从而可得PA⊥平面BMC,故PA⊥BC;【法二】确定△ACB、△ACP、△BCP都是等腰直角三角形,CA、CB、CP两两垂直,从而可得BC⊥平面ACP,故PA⊥BC;
(Ⅱ)取AB中点H,连接CH、PH,则∠PHC就是二面角P-AB-C的平面角,证明∠PCH=90°,即可求得二面角P-AB-C所成角的余弦值.
解答:(Ⅰ)证明:【法一】如图,取PA中点M,连接CM、BM.
∵PC=AC,PB=AB,∴CM⊥PA,BM⊥PA,…(3分)
又CM∩BM=M,∴PA⊥平面BMC,BC?平面BMC,∴PA⊥BC. …(6分)
【法二】由PA=PB=AB=
2
PC=
2
AC=
2
BC
知,△ACB、△ACP、△BCP都是等腰直角三角形,CA、CB、CP两两垂直,…(3分)
∴BC⊥平面ACP,PA?平面ACP,∴PA⊥BC. …(6分)
(Ⅱ)解:取AB中点H,连接CH、PH.
∵AC=BC,PA=PB,∴CH⊥AB,PH⊥AB,
∴∠PHC就是二面角P-AB-C的平面角  …(9分)
AB=
2
AC=
2
BC
,∴AC2+BC2=AB2
∴∠ACB=90°,∴△ACB是等腰直角三角形.
设BC=a,则在△PHC中,CH=
2
2
a
PH=
PB2-BH2
=
(
2
a)
2
-(
2
2
a)
2
=
6
2
a
,PC=a,…(12分)
∴PH2=PC2+CH2,∴∠PCH=90°.
在△PCH中,cos∠PHC=
CH
PH
=
3
3

∴二面角P-AB-C所成角的余弦值为
3
3
.…(14分)
点评:本题考查线面垂直,线线垂直,考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案