【题目】已知函数y=f(x)和y=g(x)在[﹣2,2]上的图象如图所示.给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根;
②方程g[f(x)]=0有且仅有3个根;
③方程f[f(x)]=0有且仅有5个根;
④方程g[g(x)]=0有且仅有4个根.
其中正确的命题的个数为( )
A.1
B.2
C.3
D.4
科目:高中数学 来源: 题型:
【题目】如果函数f(x)是定义在(﹣3,3)上的奇函数,当0<x<3时,函数f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是( )
A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足f(x)=ax2+bx+c(a≠0),满足f(x+1)﹣f(x)=2x,且f(0)=1,
(1)函数f(x)的解析式:
(2)函数f(x)在区间[﹣1,1]上的最大值和最小值:
(3)若当x∈R时,不等式f(x)>3x﹣a恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P是抛物线y2=8x上的一个动点,Q是圆(x﹣3)2+(y﹣1)2=1上的一个动点,N(2,0)是一个定点,则|PQ|+|PN|的最小值为( )
A.3
B.4
C.5
D. +1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有 >0.
(Ⅰ)证明f(x)在[﹣1,1]上是增函数;
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1对x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣(m﹣1)x+2m
(1)若函数f(x)>0在(0,+∞)上恒成立,求m的取值范围;
(2)若函数f(x)在(0,1)内有零点,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com