精英家教网 > 高中数学 > 题目详情

已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、p中的真命题是________.

 

【答案】

p

【解析】主要考查简单的逻辑联结词的含义。

解:对于p,当a>0,b>0时,|a|+|b|=|a+b|,故p假,p为真;对于q,抛物线y=x2-x+1的对称轴为x=,故q假,所以p∨q假,p∧q假.

这里p应理解成|a|+|b|>|a+b|不恒成立,而不是|a|+|b|≤|a+b|.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足
AP
+
BP
=λ(
AM
+
BM
)
,其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1,k2,k3,k4,k1+k2=5,则k3+k4=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知
a
b
是两个不共线的非零向量.
(1)设
OA
=
a
OB
=t
b
(t∈R),
OC
=
1
3
(
a
+
b
)
,当A、B、C三点共线时,求t的值.
(2)如图,若
a
=
OD
b
=
OE
a
b
夹角为120°,|
a
|=|
b
|=1,点P是以O为圆心的圆弧
DE
上一动点,设
OP
=x
OD
+y
OE
(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B分别是直线y=
3
3
x
y=-
3
3
x
上的两个动点,线段AB的长为2
3
,P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)任意作直线l(与x轴不垂直),设l与(1)中轨迹C交于M、N,与y轴交于R点.若
RM
MQ
RN
NQ
,证明:λ+μ 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知A、B为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1
的公共顶点,P、Q分别为双曲线和椭圆上不同于A、B的动点,且
OP
OQ
(λ∈R,λ>1)
.设AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4
(1)求证:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)设F1、F2分别为双曲线和椭圆的右焦点,若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

同步练习册答案