精英家教网 > 高中数学 > 题目详情
已知A,B,C,D为四个不同点,且
AB
+
BC
+
CD
+
DA
=
0
,则(  )
A、A,B,C,D四点必共面
B、A,B,C,D四点构成一个空间四边形
C、A,B,C,D四点必共线
D、A,B,C,D四点的位置无法确定
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:据向量加法的三角形法则计算即可
解答: 解∵
AB
+
BC
+
CD
+
DA
=
0

AB
+
BC
+
CD
+
DA
=(
AB
+
BC
)+(
CD
+
DA
)=
AC
+
CA
=
0

∴A,B,C,D四点的位置无法确定,
故选:D
点评:本题考查了向量加法的三角形法则,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x
,g(x)=lnx.
(1)求函数f(x)在点(1,0)处的切线y=h(x);
(2)在(1)的条件下,证明:对任意的x∈(0,+∞),h(x)-g(x)≥
1
2
f(x)恒成立;
(3)若对于任意的x1>x2>0,f(x1)-f(x2)>m[g(x1)-g(x2)]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的外接圆是半径为1的圆O,且∠AOB=120°,则
AC
CB
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位:km2).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点P(2,
π
3
)到极轴的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
m2
=1的右焦点到其渐近线的距离等于
3
,则该双曲线的离心率等于(  )
A、
1
2
B、
3
2
C、2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:函数y=(m+2)x-1是R上的单调增函数.若“p或q”是真命题,“p且q”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ),其中φ∈(0,2π),若f(x)≤|f(
π
6
)|对x∈R恒成立,且f(
π
2
)<f(π),则f(x)的单调递增区间是(  )
A、[kπ+
π
6
,kπ+
3
](k∈Z)
B、[kπ-
π
3
,kπ+
π
6
](k∈Z)
C、[kπ,kπ+
π
2
](k∈Z)
D、[kπ-
π
2
,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为R的球内接一个正方体,则该正方体的体积是(  )
A、
8
9
3
R3
B、
3
9
R3
C、2
2
R3
D、8R3

查看答案和解析>>

同步练习册答案