精英家教网 > 高中数学 > 题目详情
从双曲线
x2
36
-
y2
64
=1
的左焦点F引圆x2+y2=36的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|的值为
 
分析:设双曲线的右焦点为Q,|MO|=
|PQ|
2
,|MT|=
|PF|
2
-|FT|
,|MO|-|MT|=|=
|PQ|
2
-(
|PF|
2
-|FT|
).
解答:解:设双曲线的右焦点为Q,
|MO|=
|PQ|
2
,|MT|=
|PF|
2
-|FT|

∵|OF|=10,|OT|=6,所以|FT|=8,
则|MO|-|MT|=|=
|PQ|
2
-(
|PF|
2
-|FT|
)=
|PQ|-|PF|
2
+8=8-6=2

故答案为2.
点评:本题考查圆的性质的综合运用,解题时要注意双曲线的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与曲线
x2
24
+
y2
49
=1
共焦点,而与双曲线
x2
36
-
y2
64
=1
共渐近线的双曲线方程为(  )
A、
x2
9
-
y2
16
=1
B、
x2
16
-
y2
9
=1
C、
y2
9
-
x2
16
=1
D、
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)光线被曲线反射,等效于被曲线在反射点处的切线反射.已知光线从椭圆的一个焦点出发,被椭圆反射后要回到椭圆的另一个焦点;光线从双曲线的一个焦点出发被双曲线反射后的反射光线等效于从另一个焦点发出;如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
与双曲线C′:
x2
m2
-
y2
n2
=1(m>0,n>0)
有公共焦点,现一光线从它们的左焦点出发,在椭圆与双曲线间连续反射,则光线经过2k(k∈N*)次反射后回到左焦点所经过的路径长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点F1和F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8
3
.若直线y=t(t>0)与椭圆C交于不同的两点E、F,以线段EF为直径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与x轴相切,求圆M被直线x-
3
y+1=0
截得的线段长.

查看答案和解析>>

科目:高中数学 来源: 题型:

从双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的关系为(  )
A、|MO|-|MT|>b-a
B、|MO|-|MT|<b-a
C、|MO|-|MT|=b-a
D、|MO|-|MT|与b-a无关

查看答案和解析>>

同步练习册答案