精英家教网 > 高中数学 > 题目详情
设集合P={x|},Q={x|log3x<1},那么“m∈P”是“m∈Q”的( )
A.充分不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】分析:先求出集合P,Q的元素,利用集合元素的关系确定条件关系.
解答:解:P={x|}={x|0≤x<1},Q={x|log3x<1}={x|0<x<3}.
所以“m∈P”是“m∈Q”的既不充分也不必要条件.
故选D.
点评:本题主要考查充分条件和必要条件的判断,先化简集合,利用元素之间的关系进行判断是解决本题的关键,要注意分数函数的分母不能等于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合P={x|x2-2
3
x≤0},m=20.3,则下列关系中正确的(  )
A、m?PB、m∉P
C、{m}∈PD、{m}?P

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={x-y,x+y,xy},Q={x2+y2,x2-y2,0},若P=Q,求x,y的值及集合P、Q.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={x|x2-
2
x≤0
},m=30.5,则下列关系中正确的是(  )
A、m?PB、m∉P
C、m∈PD、m?P

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合p={x|x<1},集合Q={x|
1x
<0},则P∩Q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={x|x为立方后等于自身的数},那么集合P的真子集个数是
 

查看答案和解析>>

同步练习册答案