【题目】如图:在四棱锥中,平面.,,.点是与的交点,点在线段上且.
(1)证明:平面;
(2)求直线与平面所成角的正弦值;
(3)求二面角的正切值.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)推导出,在正三角形中,,从而.
进而,由此能证明平面;
(2)分别以为轴,轴,轴建立如图的空间直角坐标系,求出与平面的法向量,进而利用向量的夹角公式可求出直线与平面所成角的正弦值;
(3)求出面与面的法向量,进而利用向量的夹角公式可求出二面角的平面角的余弦值,再转化为正切值即可.
证明:(1)∵在四棱锥中,平面.,
,.点是与的交点,
,
∴在正三角形中,,
在中,∵是中点,,
,又,
,
,
∵点在线段上且,
,
平面,平面,
∴平面.
(2),
分别以为轴,轴,轴建立如图的空间直角坐标系,
,
,
,
设平面的法向量,
则,取,得,
,
设直线与平面所成角为,
则,
故直线与平面所成角的正弦值为;
(3)由(2)可知,为平面的法向量,
,
设平面的法向量为,
则,即,
令,解得,
设二面角的平面角为,则,
故二面角的正切值为.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为为参数, ).以坐标原点为极点,以轴正半轴为极轴的极坐标系中,曲线上一点的极坐标为,曲线的极坐标方程为.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)设点在上,点在上(异于极点),若四点依次在同一条直线上,且成等比数列,求 的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;
(2)求曲线与曲线交点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近的一点,为圆周上靠近的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品均需要,两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲 | 乙 | 原料限额 | |
(吨) | 3 | 2 | 10 |
(吨) | 1 | 2 | 6 |
A. 10万元B. 12万元C. 13万元D. 14万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P(元)与时间t(天)的函数关系如图所示(1),该商品日销售量Q(件)与时间t(天)的函数关系如图(2)所示.
(1)(2)
(1)写出图(1)表示的销售价格与时间的函数关系式,写出图(2)表示的日销售量与时间的函数关系式及日销售金额M(元)与时间的函数关系式.
(2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N(元)与时间t(天)之间的函数关系式为,试比较4月份每天两商店销售金额的大小关系。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数的最大值和最小值,并求取得最大值和最小值时对应的的值;
(2)设方程在区间内有两个相异的实数根求的值;
(3)如果对于区间上的任意一个都有成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com