精英家教网 > 高中数学 > 题目详情
函数f( x )=2x-
ax
的定义域为(0,1](a为实数).
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围.
分析:(1)先根据a的值求出函数f(x)的解析式,然后利用基本不等式求出函数y=f(x)的最小值,注意等号成立的条件,从而求出函数y=f(x)的值域;
(2)将函数y=f(x)在定义域上是减函数,转化成f′(x)≤0对x∈(0,1]恒成立,然后将a分离出来得到a≤-2x2
x∈(0,1],只需a≤(-2x2min即可,从而求出a的取值范围.
解答:解:(1)f(x)=2x+
1
x
≥2
2
,∵x∈(0,1]
∴当且仅当2x=
1
x
,即x=
2
2
时,f(x)min=2
2

所以函数y=f(x)的值域为[2
2
,+∞)

(2)因为函数y=f(x)在定义域上是减函数,
所以f′(x)=2+
a
x2
=
2x2+a
x2
≤0
对x∈(0,1]恒成立,
即a≤-2x2,x∈(0,1],所以a≤(-2x2min
所以a≤-2,故a的取值范围是:(-∞,-2];
点评:本题主要考查函数的概念、性质及利用导数研究恒成立问题等基础知识,考查灵活运用基本不等式方法进行探索求值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x(x≥0)
x-2(x<0)
,满足x+(x+2)f(x+2)≤2的x取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-log3x
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(2-a)x-
a
2
,(x<1)
logax,(x≥1)
是R上的增函数,那么实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(ln
1+x
+
1
2
x2)-ax
,其中a为常数.
(Ⅰ)若f(x)在(0,1)上单调递增,求实数a的取值范围;
(Ⅱ)求证:D
n
k=2
k-1
k2
<ln
n+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:向量
m
=(sinx,
3
4
),
n
=(cosx,-1)
,设函数f(x)=2(
m
+
n
)•
n

(1)求f(x)解析式;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c.若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
) (x∈[0,
π
2
])
的取值范围.

查看答案和解析>>

同步练习册答案