【题目】已知函数.
(1)解关于x的不等式;
(2)对任意的(﹣1,2),恒成立,求实数k的取值范围.
【答案】:(1)当时,解集为,当时,解集为. 当时,解集为.(2)
【解析】
(1)按照k与﹣1的大小分三种情况讨论;(2)分离参数k后,构造函数,利用基本不等式求得最小值即可.
(1)因为f(x)<2,
∴x2+(1﹣k)x﹣k<0,
∴(x+1)(x﹣k)<0
当k>﹣1时,﹣1<x<k,
当k=﹣1时,不等式无解,
当k<﹣1时,k<x<﹣1,
综上所述:当k>﹣1时,不等式的解集为(﹣1,k);
当k=﹣1时,不等式无解;
当k<﹣1时,不等式的解集为(k,﹣1);
(2)对任意的x∈(﹣1,2),f(x)≥1k≤=x+1+﹣1恒成立,
令g(x)=x+1+﹣1,x∈(﹣1,2),则k≤g(x)min
∵g(x)≥2﹣1=1,即g(x)min=1,
故k≤1.
科目:高中数学 来源: 题型:
【题目】如果函数在定义域的某个区间上的值域恰为,则称函数为上的等域函数,称为函数的一个等域区间.
(1)若函数,,则函数存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由
(2)已知函数,其中且,,.
(ⅰ)当时,若函数是上的等域函数,求的解析式;
(ⅱ)证明:当,时,函数不存在等域区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形和,其中与、分别相切于点,且与无重叠,剩余部分(阴影部分)种植草坪.设长为(单位:百米),草坪面积为(单位:万平方米).
(1)试用分别表示扇形和的面积,并写出的取值范围;
(2)当为何值时,草坪面积最大?并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M,N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,线段MN的中点A的横坐标为.
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B,求点B的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中四边形为正方形,分别为的中点.在此几何体中,给出下列结论,其中正确的结论是( )
A.平面平面B.直线平面
C.直线平面D.直线平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中点.
(1)求证:C1D⊥平面AA1B1B;
(2)当点F 在BB1上的什么位置时,AB1⊥平面C1DF ?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com