精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)解关于x的不等式

(2)对任意的(﹣1,2),恒成立求实数k的取值范围.

【答案】:(1)时,解集为,时,解集为. 时,解集为.(2)

【解析】

(1)按照k与﹣1的大小分三种情况讨论;(2)分离参数k后,构造函数,利用基本不等式求得最小值即可.

1)因为fx)<2

x2+1kxk0

∴(x+1)(xk)<0

k>﹣1时,﹣1xk

k=1时,不等式无解,

k<﹣1时,kx<﹣1

综上所述:当k>﹣1时,不等式的解集为(﹣1k);

k=1时,不等式无解;

k<﹣1时,不等式的解集为(k,﹣1);

2)对任意的x∈(﹣12),fx≥1k≤=x+1+1恒成立,

gx=x+1+1x∈(﹣12),则k≤gxmin

gx≥21=1,即gxmin=1

k≤1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果函数在定义域的某个区间上的值域恰为,则称函数上的等域函数,称为函数的一个等域区间.

1)若函数,则函数存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由

2)已知函数,其中

(ⅰ)当时,若函数上的等域函数,求的解析式;

(ⅱ)证明:当时,函数不存在等域区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形,其中分别相切于点,且无重叠,剩余部分(阴影部分)种植草坪.长为(单位:百米),草坪面积为(单位:万平方米).

1)试用分别表示扇形的面积,并写出的取值范围;

2)当为何值时,草坪面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M,N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,线段MN的中点A的横坐标为.

(1)|MF|+|NF|的值;

(2)p=2,直线MNx轴交于点B,求点B的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中四边形为正方形,分别为的中点.在此几何体中,给出下列结论,其中正确的结论是( )

A.平面平面B.直线平面

C.直线平面D.直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1D A1B1的中点.

(1)求证:C1D平面AA1B1B

(2)当点F BB1上的什么位置时,AB1平面C1DF ?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为正方形, 平面 上一点,且.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案