精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有
f(x+y)=f(x)f(y)
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)

①求{an}通项公式.
②当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(loga+1x-logax+1)
对不小于2的正整数恒成立,求x的取值范围.
分析:本题考查的是抽象函数与数列的综合问题.在解答时,对(Ⅰ)可以先利用特值解得f(0),再利用单调性的定义判断函数的单调性即可;对(Ⅱ)因为数列的首项易求,再结合f(an+1)=
1
f(-2-an)
(n∈N*)
,可知数列的通项公式为an=2n-1从而①即可解答;对②利用等差数列的知识可求的不等式左边的和进而获得最小值从而找到有关x的不等式,最终即可获得解答.
解答:精英家教网解:(Ⅰ)x,y∈R,f(x+y)=f(x)•f(y),x<0时,f(x)>1
令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1
若x>0,则f(x-x)=f(0)=f(x)f(-x)
f(x)=
1
f(-x)
∈(0,1)

故x∈Rf(x)>0
任取x1<x2f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1
∵x2-x1>0∴0<f(x2-x1)<1
∴f(x2)<f(x1
故f(x)在R上减函数

(Ⅱ)①a1=f(0)=1,f(an+1)=
1
f(-2-an)
=f(2+an)

由f(x)单调性知,an+1=an+2故{an}等差数列
∴an=2n-1
bn=
1
an+1
+
1
an+2
++
1
a2n
,则bn+1=
1
an+2
+
1
an+3
++
1
a2n+2
bn+1-bn=
1
a2n+1
+
1
a2n+2
-
1
an+1
=
1
4n+1
+
1
4n+3
-
1
2n+1

=
1
(4n+1)(4n+3)(2n+1)
>0,{bn}
是递增数列
当n≥2时,(bn)min=b2=
1
a3
+
1
a4
=
1
5
+
1
7
=
12
35

12
35
12
35
(loga+1x-logax+1)

即loga+1x-logax+1<1?loga+1x<logax
而a>1,
∴x>1
故x的取值范围:(1,+∞)
点评:本题考查的是抽象函数与数列的综合问题.在解答的过程当中充分体现了抽象函数特值的思想、数列求和的思想、恒成立的思想以及解不等式和问题转化的思想.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案