精英家教网 > 高中数学 > 题目详情

【题目】已知一定点,及一定直线,以动点为圆心的圆过点,且与直线相切

(Ⅰ)求动点的轨迹的方程

(Ⅱ)设在直线上,直线分别与曲线相切于为线段的中点求证:且直线恒过定点

【答案】(1)动点的轨迹的方程为;(2)见解析.

【解析】

分析:(1)利用直接法,即可求动点的轨迹的方程

(2)依题意可设∴切线同理可得切线PB,故可得到,从而整理可得答案.

详解:(1) ∵圆过点,且与直线相切

∴点到点的距离等于点到直线的距离

∴点的轨迹是以为焦点以直线为准线的一抛物线

动点的轨迹的方程为.

(2)依题意可设

,∴,∴

∴切线的斜率

∴切线

同理可得切线的斜率

,∴

故方程有两根,∴

,∴

为线段的中点,∴

又由

同理可得

故直线的方程为故直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数fx),当x≥0时,fx)=(x121的图象如图所示,

1)请补全函数fx)的图象并写出它的单调区间.

2)根据图形写出函数fx)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为边长为2的菱形,,面,点为棱的中点.

(1)在棱上是否存在一点,使得,并说明理由;

(2)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,为了保护各国国家元首的安全,某部门将5个安保小组安排到指定的三个区域内工作,且每个区域至少有一个安保小组,则这样的安排方法共有________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是偶函数的导函数在区间上的唯一零点为2,并且当则使得成立的的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次的一次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

)求参加测试的总人数及分数在[8090)之间的人数;

)若要从分数在[80100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,恰有一份分数在[90100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的曲线.当时,曲线是二次函数图象的一部分,当时,曲线是函数图象的一部分.根据专家研究,当注意力指数大于80时学习效果最佳.

(1)试求的函数关系式;

(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若fx)的图象上存在关于原点对称的点,则称fx)为定义域上的伪奇函数

1)若fx)=ln2x+1+m是定义在区间[11]上的伪奇函数,求实数m的取值范围;

2)试讨论fx)=4xm2x+2+4m23R上是否为伪奇函数?并说明理由.

查看答案和解析>>

同步练习册答案