精英家教网 > 高中数学 > 题目详情
9.在四边形ABCD中,若$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,且$|{\overrightarrow{AB}}|=|{\overrightarrow{AD}}|$,则(  )
A.ABCD是矩形B.ABCD是菱形
C.ABCD是正方形D.ABCD是平行四边形

分析 利用向量的平行四边形法则、菱形的定义即可判断出.

解答 解:在四边形ABCD中,若$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,且$|{\overrightarrow{AB}}|=|{\overrightarrow{AD}}|$,
则四边形ABCD是由一组邻边相等的平行四边形,
∴四边形ABCD是菱形.
故选:B.

点评 本题考查了向量的平行四边形法则、菱形的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在锐角△ABC中,a、b、c是角A、B、C所对的边,且4sinB•sin2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B=1+$\sqrt{3}$
(1)求角B的度数;
(2)若S是该三角形的面积,a=8,S=10$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,a,b,c分别为角A,B,C所对的边,若a=4,A=30°,则$\frac{b+c}{sinB+sinC}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知复数z1=$\frac{1}{a+2}$+(a2-1)i,z2=2+2(a+1)i(a∈R,i是虚数单位).
(1)若复数z1-z2在复平面上对应点落在第一象限,求实数a的取值范围;
(Ⅱ)若虚数z1是实系数一元二次方程4x2-4x+m=0的根,求实数m值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=Asin(ωx+φ)的部分图象如图所示:
(ω>0,|φ|≤$\frac{π}{2}$),则A=2;ω=2;φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y为正实数,若关于x,y的不等式$\frac{3x}{2x+y}$+$\frac{3y}{x+2y}$≤m2+m恒成立,则实数m的取值范围是(-∞,-2]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的内角A、B、C所对的边分别为a、b、c,且acosC+$\frac{1}{2}$c=b,
(Ⅰ)求角A的大小;
(Ⅱ)当a=1时,求△ABC内切圆半径R的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以(2,-1)为圆心且与直线3x-4y+5=0相交所得弦长为8的圆的标准方程为(  )
A.(x-2)2+(y+1)2=9B.(x+2)2+(y-1)2=9C.(x-2)2+(y+1)2=25D.(x+2)2+(y-1)2=25

查看答案和解析>>

同步练习册答案