精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-m(x+1)ln(x+1),(x>-1,m≥0)
(1)求f(x)的单调区间;
(2)当m=1时,若直线y=t与函数f(x)在[-
12
,1]
上的图象有两个交点,求实数t的取值范围;
(3)证明:当a>b>0时,(1+a)b<(1+b)a
分析:(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求解.
(2)由(1)求出f(x)的单调区间,由题意直线y=t与函数f(x)在[-
1
2
,1]
上的图象有两个交点等价于方程f(x)=t在[-
1
2
,1]
上有两个实数解,从而求出实数t的取值范围;
(3)只需证bln(1+a)<aln(1+b),只需证:
ln(1+a)
a
ln(1+b)
b
,设g(x)=
ln(1+x)
x
,(x>0)
则利用函数的单调性进行证明.
解答:解:(1)f'(x)=1-mln(x+1)-m
=1 ①m=0时,f'(x)=1>0,
∴f(x)在定义域(-1,+∞)是增函数(2分)
=2 ②m>0时,令f'(x)>0得mln(x+1)<1-m,∴-1<x<e
1-m
m
-1

∴f(x)在[-1,e
1-m
m
-1]
上单调递增,在[e
1-m
m
-1,+∞)
上单调递减(4分)
(2)直线y=t与函数f(x)在[-
1
2
,1]
上的图象有两个交点等价于方程f(x)=t在[-
1
2
,1]
上有两个实数解(5分)
由(I)知,f(x)在[-
1
2
,0]
上单调递增,在[0,1]上单调递减.
f(0)=0,f(1)=1-ln4,f(-
1
2
)=-
1
2
+
1
2
ln2
,且f(1)<f(-
1
2
)
(7分)
∴当t∈[-
1
2
+
1
2
ln2,0)
时,方程f(x)=t有两个不同解,
即直线y=t与函数f(x)在[-
1
2
,1]
上的图象有两个交点(8分)
(3)要证:(1+a)b<(1+b)a
只需证bln(1+a)<aln(1+b),只需证:
ln(1+a)
a
ln(1+b)
b
(10分)
g(x)=
ln(1+x)
x
,(x>0)
g′(x)=
x
1+x
-ln(1+x)
x2
=
x-(1+x)ln(1+x)
x2(1+x)
.(12分)
由(I)知x-(1+x)ln(1+x)在(0,+∞)单调递减,∴x-(1+x)ln(1+x)<0即g(x)是减函数,而a>b
∴g(a)<g(b),故原不等式成立(14分)
点评:此题主要考查对数函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案