精英家教网 > 高中数学 > 题目详情
3.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为3的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为3的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

分析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.

解答 解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,
正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,
如图所示.
(1)几何体的体积为
V=$\frac{1}{3}$•S矩形•h=$\frac{1}{3}$×6×8×3=48;
(2)正侧面及相对侧面底边上的高为:h1=$\sqrt{{3}^{2}+{3}^{2}}$=$3\sqrt{2}$.
左、右侧面的底边上的高为:
h2=$\sqrt{{4}^{2}+{3}^{2}}$=5.
故几何体的侧面面积为:
S=2×($\frac{1}{2}$×8×$3\sqrt{2}$+$\frac{1}{2}$×6×5)=30+24$\sqrt{2}$.

点评 本题考查的知识点是棱柱、棱锥、棱台的体积,其中根据已知的三视图分析出几何体的形状是解答的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设a=20.3,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{2}{3}$,则a、b、c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.i为虚数单位,则i(1-$\sqrt{3}$i)=(  )
A.$\sqrt{3}$-iB.$\sqrt{3}$+iC.-$\sqrt{3}$-iD.-$\sqrt{3}$+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式(m+1)x2-4x+1≤0(m∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{1}{\sqrt{sin2x}}$的定义域为(kπ,kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数a,b满足:a2+b2≠0,过点M(-1,0)作直线ax+by+2b-a=0的垂线,垂足为N,点P(1,1),则|PN|的最大值为$\sqrt{5}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化.
(1)求出种群数量y关于时间t的函数表达式;(其中t以年初以来的月为计量单位)
(2)估计当年3月1日动物种群数量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的离心率为$\frac{\sqrt{2}}{2}$,A,B分别为左、右顶点,F2为其右焦点,P是椭圆C上异于A,B的动点,且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-2.
(1)求椭圆C的方程;
(2)若过左焦点F1的直线交椭圆于M,N两点,求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(3,4,4),B(-2,-1,5),C(4,5,0),若点D在线段AC上,且△ABD的面积是△ABC的面积的$\frac{1}{3}$,求线段BD的长.

查看答案和解析>>

同步练习册答案