精英家教网 > 高中数学 > 题目详情

【题目】设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

【答案】D
【解析】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y= 的定义域[﹣2,2],
由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),
则A∩B=[﹣2,1),
故选D.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立,以及对函数的定义域及其求法的理解,了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 ,则λ+μ的最大值为( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明:b2>3a;
(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣ ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在非零实数集上的函数满足,且是区间上的递增函数.

1)求的值;

2)求证:

3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知当x∈[0,1]时,函数y=(mx﹣1)2 的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是(  )
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一个算法流程图,当输入的x=5时,那么运行算法流程图输出的结果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

同步练习册答案