精英家教网 > 高中数学 > 题目详情
如图,A,B是椭圆C:的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

【答案】分析:(1)由,右准线l的方程为x=4,建立方程组,求得几何量,从而可求椭圆的方程;
(2)根据题意,可得A,M,P三点共线,MQ⊥PQ,由此可得几何量之间的关系,从而可求离心率.
解答:解:(1)由题意:,解得.∴椭圆C的方程为.            …(6分)
(2)设
∵A,M,P三点共线,∴,∴,…(9分)
=
∴c2+ac-a2=0
∴e2+e-1=0,解得.…(16分)
点评:本题考查椭圆的几何性质与标准方程,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,椭圆C的离心率为
1
2
,右准线l的方程为x=4.
(I)求椭圆的方程;
(II)设M是椭圆C上异于A,B的一点,直线AM交l于点P,以MP为直径的圆记为⊙k.
(i)若M恰好是椭圆C的上顶点,求⊙k截直线PB所得的弦长;
(ii)设⊙k与直线MB交于点Q,试证明:直线PQ与x轴的交点R为定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右顶点,M是椭圆上异于A,B的任意一点,若椭圆C的离心率为
1
2
,且右准线l的方程为x=4.
(1)求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交直线MB于点Q,试证明:直线PQ与x轴的交点R为定点,并求出R点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B是椭圆C:数学公式的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若数学公式,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案