精英家教网 > 高中数学 > 题目详情

【题目】已知点A(-2,0),B(2,0),过点A作直线l与以AB为焦点的椭圆交于MN两点,线段MN的中点到y轴的距离为,且直线l与圆x2y2=1相切,则该椭圆的标准方程是________,过A点的椭圆的最短弦长为________.

【答案】

【解析】

根据题意,知直线l的斜率存在,设直线l的方程为yk(x+2),①

由题意设椭圆方程为=1(a2>4),②

由直线l与圆x2y2=1相切,得=1,解得k2.将①代入②,得(a2-3)x2a2xa4+4a2=0,设点M的坐标为(x1y1),N的坐标为(x2y2),由根与系数的关系,得x1x2=-又线段MN的中点到y轴的距离为,所以|x1x2|=,即-=-,解得a2=8.所以该椭圆的标准方程为.过A点的椭圆最短弦垂直于x轴,其长为2.故填,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,下列结论不正确的是( )

A. 此函数为偶函数B. 此函数是周期函数

C. 此函数既有最大值也有最小值D. 方程的解为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;

“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?

(完善列联表,并说明理由).

亩产量\降雨量

合计

<600

2

1

合计

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设函数的所有零点构成集合,函数的所有零点构成集合

1)试求集合

2)令,求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:,使等式成立是真命题.

1求实数的取值集合

2设不等式的解集为,若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求满足方程的值;

2)若函数是定义在R上的奇函数.

①若存在,使得不等式成立,求实数的取值范围;

②已知函数满足,若对任意,不等式恒成立,求实数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:

月份

2017.8

2017.9

2017.10

2017.11

2017.12

2018.1

月份代码x

1

2

3

4

5

6

市 场占有率y(%)

11

13

16

15

20

21

(1)请在给出的坐标纸中作出散点图;

(2)求y关于x的线性回归方程,并预测该公司20182月份的市场占有率;

参考公式:回归直线方程为 其中:,

查看答案和解析>>

同步练习册答案