精英家教网 > 高中数学 > 题目详情

【题目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一条直线的条件;
(2)当m为何值时,方程表示的直线与x轴垂直;
(3)若方程表示的直线在两坐标轴上的截距相等,求实数m的值.

【答案】
(1)解:由 ,得:m=﹣1

∵方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R)表示直线

∴m2﹣2m﹣3、2m2+m﹣1不同时为0,∴m≠﹣1


(2)解:方程表示的直线与x轴垂直,∴ ,∴
(3)解:当5﹣2m=0,即 时,直线过原点,在两坐标轴上的截距均为0

时,由 得:m=﹣2


【解析】(1)由 ,得:m=﹣1,方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R)表示直线,可得m2﹣2m﹣3、2m2+m﹣1不同时为0,即可得出.(2)方程表示的直线与x轴垂直,可得 ,(3)当5﹣2m=0,即 时,直线过原点,在两坐标轴上的截距均为0.当 时,由 ,解得:m.
【考点精析】根据题目的已知条件,利用一般式方程的相关知识可以得到问题的答案,需要掌握直线的一般式方程:关于的二元一次方程(A,B不同时为0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(图1)及相应的消耗能量数据表(表1)如下:

健步走步数(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为17千步,18千步,19千步的几天中任选2天,求小王这2天通过“健步走”消耗的能量和不小于1000卡路里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).
(1)求圆M的方程;
(2)过坐标原点O的直线l被圆M截得的弦长为 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:

组序

高度区间

频数

频率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合计

100

1.00

(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知S2=4,an+1=2Sn+1,n∈N*
(1)求通项公式an
(2)求数列{|an﹣n﹣2|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是(
A.直角三角形
B.钝角三角形
C.等腰直角三角形
D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣2,an+1=2an+4.
(1)证明数列{an+4}是等比数列并求出{an}通项公式;
(2)若 ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最小值;

(2)若函数上单调,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在边长为24的正方形中,点在边上,且 分别交于点分别交于点将该正方形沿折叠,使得重合,构成如图2所示的三棱柱.

(1)求证: 平面

(2)求多面体的体积.

查看答案和解析>>

同步练习册答案