精英家教网 > 高中数学 > 题目详情
已知数列{an}(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
(3)设q≠1,Sn是等比数列{an}的前n项和,求:S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn
分析:(1)利用组合数公式和等比数列的通项公式进行化简,再利用平方差和立方差公式合并.
(2)利用归纳推理和(1)的结果进行推理出结论,利用二项式定理从左边到右边证明.
(3)由题意知数列{an}是等比数列,而且q≠1,求出sn代入所给的式子,进行整理和分组,再利用二项式定理求解.
解答:解:(1)a1C20-a2C21+a3C22=a1-2a1q+a1q2
=a1(1-q)2
a1C30-a2C31+a3C32-a4C33
=a1(1-q)2a1C30-a2C31+a3C32-a4C33
=a1-3a1q+3a1q2-a1q3
=a1(1-q)3
(2)归纳概括的结论为:若数列{an}是首项为a1,公比为q的等比数列,
则a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn=a1(1-q)n,n为正整数
证明:a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn
=a1Cn0-a1qCn1+a1q2Cn2-a1q3Cn3+…+(-1)na1qnCnn
=a1[Cn0-qCn1+q2Cn2-q3Cn3+…+(-1)nqnCnn]
=a1(1-q)n
∴左边=右边,该结论成立.
(3)∵数列{an}(n为正整数)是首项是a1,公比为q的等比数列,而且q≠1.
Sn=
a1-a1qn
1-q
=
a1(1-qn)
1-q

∴S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn
=
a1
1-q
[(1-q)cn0-(1-q2)cn1+(1-q3)cn2-(1-q4)cn3+…+(-1)n(1-qn+1)cnn]
=
a1
1-q
[
C
0
n
-
C
1
n
+
C
2
n
-
C
3
n
+…+(-1)n
C
n
n
]-
a1q
1-q
[
C
0
n
-q
C
1
n
+q2
C
2
n
-q3
C
3
n
+…+(-1)nqn
C
n
n
]

=
a1q
q-1
(1-q)n
点评:本题为等比数列和二项式定理的综合应用,还用到组合数公式,计算量大;在化简式子时根据特点进行分组求解,利用二项式定理进行化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、已知数列{an}(n≥1)满足an+2=an+1-an,且a2=1.若数列的前2011项之和为2012,则前2012项的和等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N+)中,a1=1,an+1=
an
2an+1
,则an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

同步练习册答案