【题目】如图三棱柱中,侧面为菱形, .
(1)证明: ;
(2)若, ,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)连接,交于点,连接,可证平面,可得, ,进而可得;(2)以为坐标原点, 的方向为轴正方向, 为单位长,建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.
试题解析:(1)连接,交于点,连接,因为侧面为菱形,所以,且为及的中点,又,所以平面.由于平面,故,又,故 .
(2)因为,且为的中点,所以.
又因为,所以,故,从而两两相互垂直, 为坐标原点, 的方向为轴正方向, 为单位长,建立空间直角坐标系(图略)
因为,所以为等边三角形,又,则, . , ,设是平面的法向量,则
,即,设是平面的法向量,则,同理可取.
所以可取, ,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)=ax2+x.
(Ⅰ)当a>0时,求证:对任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)当x∈[0,2]时,|f(x)|≤1恒成立,求实数a的取值范围;
(Ⅲ)若a=,点p(m,n2)(m∈Z,n∈Z)是函数y=f(x)图象上的点,求m,n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为 π,A1B1长为 ,其中B1与C在平面AA1O1O的同侧.
(1)求三棱锥C﹣O1A1B1的体积;
(2)求异面直线B1C与AA1所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-x2+2ax.
(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在R上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.
(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(2)求这三个人该课程考核都合格的概率(结果保留三位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,,分别为椭圆的左、右焦点,过的直线与相交于、两点,的周长为.
(1)求椭圆的方程;
(2)若椭圆上存在点,使得四边形为平行四边形,求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.
(1)求函数的解析式;
(2)若关于x的方程f(x)=k有三个零点,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com