精英家教网 > 高中数学 > 题目详情

【题目】如图三棱柱中,侧面为菱形,

(1)证明:

(2)若 ,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)连接,交于点,连接,可证平面,可得 ,进而可得;(2)以为坐标原点, 的方向为轴正方向, 为单位长,建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.

试题解析:(1)连接,交于点,连接,因为侧面为菱形,所以,且的中点,又,所以平面.由于平面,故,又,故

(2)因为,且的中点,所以

又因为,所以,故,从而两两相互垂直, 为坐标原点, 的方向为轴正方向, 为单位长,建立空间直角坐标系(图略)

因为,所以为等边三角形,又,则 ,设是平面的法向量,则

,即,设是平面的法向量,则,同理可取

所以可取

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数fx)=ax2+x

(Ⅰ)当a>0时,求证:对任意的x1x2R都有[fx1)+fx2)]成立;

(Ⅱ)当x∈[0,2]时,|fx)|≤1恒成立,求实数a的取值范围;

(Ⅲ)若a=,点pmn2)(mZnZ)是函数y=fx)图象上的点,求mn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为 π,A1B1长为 ,其中B1与C在平面AA1O1O的同侧.

(1)求三棱锥C﹣O1A1B1的体积;
(2)求异面直线B1C与AA1所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exx2+2ax.

(1)a=1,求曲线yf(x)在点(1,f(1))处的切线方程;

(2)f(x)R上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三个人该课程考核都合格的概率(结果保留三位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右焦点,过的直线相交于两点,的周长为

(1)求椭圆的方程;

(2)若椭圆上存在点,使得四边形为平行四边形,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x , 则f(﹣ )+f(1)= 

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)设 ,若函数存在零点,求的取值范围;

(2)若是偶函数,设,若函数的图象只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax3bx+4,当x=2时,函数f(x)有极值-.

(1)求函数的解析式;

(2)若关于x的方程f(x)=k有三个零点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案