精英家教网 > 高中数学 > 题目详情

【题目】如图,建立平面直角坐标系xOyx轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程ykx (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

【答案】详见解析.

【解析】试题分析:求炮弹击中目标时的横坐标的最大值,炮弹可击中目标存在k>0,使3.2=ka (1+k2)a2成立,因为k>0关于k的方程a2k2-20aka2+64=0有正根判别式Δ=(-20a)2-4a2(a2+64)≥0解不等式得解.

试题解析:

因为a>0,所以炮弹可击中目标存在k>0,使3.2=ka (1+k2)a2成立关于k的方程a2k2-20aka2+64=0有正根由韦达定理满足两根之和大于0,两根之积大于0,故只需判别式Δ=(-20a)2-4a2(a2+64)≥0a≤6.

所以当a不超过6(千米)时,可击中目标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形GACBD的交点BE⊥平面ABCD

(1)证明平面AEC⊥平面BED.

(2)若∠ABC=120°AEEC三棱锥E-ACD的体积为求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB的两端在直二面角αlβ的两个面内,并与这两个面都成30°角,则异面直线ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务蓬勃发. 2016年“618”期间,某购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务满意的交易为80次.

(Ⅰ) 根据已知条件完成下面列联表,并回答能有99%的把握认为“网购者对商品满意与服务满意之间有关系”

对服务满意

对服务不满意

合计

对商品满意

80

对商品不满意

合计

200

(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务满意的次数为随机变量,求的分布列和数学期望.

附:(其中为样本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若f(1)=0,求函数fx)的最大值;
(Ⅱ)令,讨论函数gx)的单调区间;
(Ⅲ)若a=2,正实数x1x2满足证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运

会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

80

年龄大于50岁

10

合计

70

100

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,且.

(1)求的解析式;

(2)证明在区间上是增函数;

(3)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

同步练习册答案