【题目】如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.
(1)求证:平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)解法一: 作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.
(2)利用平面和平面法向量,计算出二面角的余弦值.
(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.
另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,
则,,,
,,,
,,,
,,.
(1)设平面的一个法向量为,
则,
令,则,.∴,又,
∵,,又平面,平面.
(2)设平面的一个法向量为,
则,
令,则,.∴.
同理可算得平面的一个法向量为
∴,
又由图可知二面角的平面角为一个钝角,
故二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),其中.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)已知点,与交于点,与交于两点,且,求的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.
(1)证明:平面平面;
(2)设点P在平面上的射影为点O,点分别是和的重心,当三棱锥体积最大时,回答下列问题.
(i)证明:平面;
(ii)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述正确的是( )
A.命题“p且q”为真,则恰有一个为真命题
B.命题“已知,则“”是“”的充分不必要条件”
C.命题都有,则,使得
D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com