精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为直角,分别为的中点.

(I)证明:平面平面

(II)设,且二面角的平面角大于,求的取值范围.

【答案】(Ⅰ)见证明 (Ⅱ)

【解析】

(Ⅰ)根据矩形与三角形中位线可得线线平行,进而得到线面平行,再利用面面平行的判定定理证得结论.

(Ⅱ)以A为原点,以ABADAPx,y,z轴,建立空间直角坐标系,设AB的长为1,求出平面CDB的法向量和平面EDB的法向量,然后利用向量的夹角公式建立关系,解之即可.

(Ⅰ)由已知 为直角,的中点,,故是矩形,,,

分别为的中点. ,

,所以平面

(Ⅱ)以为原点,以所在直线为轴建立空间直角坐标系,

,则,故

从而

设平面的法向量为,平面的法向量为

,取,可得

设二面角的大小为,因为,则

化简得,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上单调递增,求a的取值范围;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.

(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;

(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.

注:方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)讨论函数的单调性;

(2)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若处取得极值,求过点且与处的切线平行的直线方程;

(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x2-2ax-3a2<0(a>0),命题q:实数x满足≥0.

(Ⅰ)若a=1,p,q都为真命题,求x的取值范围;

(Ⅱ)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案