精英家教网 > 高中数学 > 题目详情

【题目】如图,的直径,点B上与AC不重合的动点,平面.

1)当点B在什么位置时,平面平面,并证明之;

2)请判断,当点B上运动时,会不会使得,若存在这样的点B,请确定点B的位置,若不存在,请说明理由.

【答案】1)当时,平面平面,证明见解析,(2)不存点B使得,理由见解析

【解析】

(1)由题可推出平面平面,,即可推出平面,进而得出结论;

(2)假设存在点满足题意,即可推出平面,进而有,又由题可推得,为锐角,这与矛盾,故不存点B使得.

(1),平面平面,证明如下:

平面,平面,

平面平面,

,平面平面,

平面,

平面,

∴平面平面;

(2)假设存在点B,使得,

B上的动点,

,

,平面,,

平面,

平面,

,

,

,,

,,

可得,为锐角,这与矛盾,

故不存点B使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.那么在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古代以六十年为一个甲子用十天干和十二地支相配六十年轮一遍,周而复始。甲子为干支之一,顺序为第一个前一位是癸亥,后一位是乙丑论阴阳五行,天干之甲属阳之木,地支之子属阳之水,是水生木相生,十干与十二支按顺序两两相配,从甲子到癸亥,共六十个组合,称六十甲子.

问题

12020年是己亥年,至少多少年后又是己亥年?

2)从一个已亥年到下一个己亥年,周期是多少?

3)计算i,,…,一直计算下去,你会得到什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港湾的平面示意图如图所示,分别是海岸线上的三个集镇,位于的正南方向处,位于的北偏东方向.随着经济的发展,为缓解集镇的交通压力,拟在海岸线上分别修建码头,开辟水上航线,勘测时发现:以为圆心,为半径的扇形区域为浅水区,不适宜船只航行.

1)能否求出集镇间的直线距离?

2)根据勘测要求,要使之间的直线航线最短,直线与圆应满足什么关系?

3)应怎样确定码头的位置,才能使得之间的直线航线最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1,2,···,n的排列的个数,使得对正整数k=1,2,···,n成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O和点,由圆O外一点P向圆O引切线Q为切点,且有 .

1)求点P的轨迹方程,并说明点P的轨迹是什么样的几何图形?

2)求的最小值;

3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E ,对于任意实数k,下列直线被椭圆E截得的弦长与lykx1被椭圆E截得的弦长不可能相等的是(  )

A. kxyk0 B. kxy10

C. kxyk0 D. kxy20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①所示的等边三角形的边长为边上的高,分别是边的中点现将沿折叠,使平面平面,如图②所示.

① ②

1)试判断折叠后直线与平面的位置关系,并说明理由;

2)求四面体外接球的体积与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若直线过点且到圆心的距离为,求直线的方程;

2)设过点的直线与圆交于两点(的斜率为负),当时,求以线段为直径的圆的方程.

查看答案和解析>>

同步练习册答案