精英家教网 > 高中数学 > 题目详情

【题目】已知

(Ⅰ)当处切线的斜率为,求的值;

(Ⅱ)在(Ⅰ)的前提下,求的极值;

(Ⅲ)若个不同零点,求的取值范围..

【答案】(1) (2) ,无极大值(3)

【解析】试题分析:(Ⅰ)求导,利用导数的几何意义进行求解;(Ⅱ)利用导函数的符号变换确定函数的单调性,进而确定函数的极值;(Ⅲ)求导,讨论的范围,研究函数的单调性和极值,通过零点的个数确定极值的符号进行求解.

试题解析:(Ⅰ)

(Ⅱ)当

为减函数

为增函数

,无极大值

(Ⅲ)

时, ,只有个零点

时,

为减函数

为增函数

∴当 ,使

时,∴

,∴

∴函数有个零点

时,

,即

变化时 变化情况是

∴函数至多有个零点,不符合题意

时, 单调递增

至多有个零点,不合题意

③当时,即

变化时 的变化情况是

时,

∴函数至多有个零点,

综上: 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面底面, ,点分别是的中点.

)求证: 平面;

)求证: 平面;

)在棱上求作一点,使得,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

1)设讨论的单调性;

2)若函数内存在零点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体ADM-BCN中, 是正方形, .

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右有顶点分别是,上顶点是,圆的圆心到直线的距离是,且椭圆的右焦点与抛物线的焦点重合.

(Ⅰ)求椭圆的方程;

(Ⅱ)平行于轴的动直线与椭圆和圆在第一象限内的交点分别为,直线轴的交点记为.试判断是否为定值,若是,证明你的结论.若不是,举反例说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是海面上位于东西方向相距海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时。求救援船直线到达D的时间和航行方向.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线经过坐标原点,求及该切线的方程;

(2)设,若函数的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男性,设调查的3人在这一时间段以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望;

(2)根据以上数据,能否有99%的把握认为周末年轻人的休闲方式与性别有关系”?

参考公式:

参考数据:

0.05

0.010

3.841

6.635

查看答案和解析>>

同步练习册答案