在四棱锥中,,,面,为的中点,.
(1)求证:;
(2)求证:面;
(3)求三棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图,四棱柱中,平面.
(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;
①,②;③是平行四边形.
(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,,点为的中点.
(1) 证明:平面平面;
(2) 求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正方形的边长为2,分别为边的中点,是线段的中点,如图,把正方形沿折起,设.
(1)求证:无论取何值,与不可能垂直;
(2)设二面角的大小为,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,,现将梯形沿CB、DA折起,使且,得一简单组合体如图2示,已知分别为的中点.
图1 图2
(1)求证:平面;
(2)求证: ;
(3)当多长时,平面与平面所成的锐二面角为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在等腰直角三角形中,,,分别是上的点,,
为的中点.将沿折起,得到如图2所示的四棱锥,其中.
(Ⅰ) 证明:平面;
(Ⅱ) 求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com