精英家教网 > 高中数学 > 题目详情

【题目】椭圆的右焦点为F到直线的距离为,抛物线的焦点与椭圆E的焦点F重合,过F作与x轴垂直的直线交椭圆于ST两点,交抛物线于CD两点,且

1)求椭圆E及抛物线G的方程;

2)过点F且斜率为k的直线l交椭圆于AB点,交抛物线于MN两点,如图所示,请问是否存在实常数,使为常数,若存在,求出的值;若不存在,说明理由.

【答案】1)椭圆方程为,抛物线G的方程为;(2)存在,理由见解析.

【解析】

1)设椭圆于抛物线的公共焦点,根据右焦点F到直线的距离为,得到,解得,再由,即,解得ab即可.

2)设,直线l的方程与椭圆方程,抛物线方程分别联立,利用弦长公式分别求得 ,代入分析求解.

1)设椭圆与抛物线的公共焦点

因为F到直线的距离为

所以

解得,所以

因为,所以

所以,又

解得

所以椭圆方程为,抛物线G的方程为.

2)设

设直线l的方程为:,与椭圆方程联立消去y得:

所以

所以.

直线l的方程与抛物线方程联立消去y得:

所以

所以

所以

要使为常数,则,解得.

故存在使得为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数,且.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)已知点P的极坐标为Q为曲线上的动点,求的中点M到曲线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面.

1)求证:平面

2)求异面直线所成角的大小;

3)点在线段上,且,点在线段上,若平面,求的值(用含的代数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饮料厂生产两种饮料.生产1饮料,需该特产原料100公斤,需时间3小时;生产1 饮料需该特产原料100公斤,需时间1小时,每天饮料的产量不超过饮料产量的2倍,每天生产两种饮料所需该特产原料的总量至多750公斤,每天生产饮料的时间不低于生产饮料的时间,每桶饮料的利润是每桶饮料利润的1.5倍,若该饮料厂每天生产饮料桶,饮料桶时()利润最大,则_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村为了脱贫致富,引进了两种麻鸭品种,一种是旱养培育的品种,另一种是水养培育的品种.为了了解养殖两种麻鸭的经济效果情况,从中随机抽取500只麻鸭统计了它们一个季度的产蛋量(单位:个),制成了如图的频率分布直方图,且已知麻鸭的产蛋量在的频率为0.66

1)求的值;

2)已知本次产蛋量近似服从(其中近似为样本平均数,似为样本方差).若本村约有10000只麻鸭,试估计产蛋量在110~120的麻鸭数量(以各组区间的中点值代表该组的取值).

3)若以正常产蛋90个为标准,大于90个认为是良种,小于90个认为是次种.根据统计得出两种培育方法的列联表如下,请完成表格中的统计数据,并判断是否有99.5%的把握认为产蛋量与培育方法有关.

良种

次种

总计

旱养培育

160

260

水养培育

60

总计

340

500

附:,则

,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的底面边长为高为其内切球与面切于点,球面上与距离最近的点记为,若平面过点且与平行,则平面截该正四棱锥所得截面的面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,当时,.

1)求数列的通项公式;

2)若,数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点在平面外,过点作面的垂线,则称垂足为点在平面内的正投影,记为.如图,在棱长为的正方体中,记平面,平面,点是棱上一动点(与不重合),.给出下列三个结论:①线段长度的取值范围是;②存在点使得平面;③存在点使得.其中正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

(1)若轴,且满足直线与圆相切,求圆的方程;

(2)若圆的半径为2,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

同步练习册答案