精英家教网 > 高中数学 > 题目详情

设函数。若,则的最大值为

A、              B、6                C、7                D、10

 

【答案】

D

【解析】

试题分析:由。它的可行域如图所示。

它的目标函数时取得最大值10。选D。

考点:本题主要考查线性规划问题的解法。

点评:本题看似是二次函数问题,对条件进行分析后则实际为关于变量a,b的线性规划问题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+bx(a>0),且f′(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:g(a)>ln(1+
a
2
)-1
(3)首先阅读材料:对于函数图象上的任意两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数图象上存在点M(x0,y0)(x0∈(x1,x2)),使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当x0=
x1+x2
2
时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年山东省枣庄市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=lnx-ax2+bx(a>0),且f′(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:g(a)>ln(1+)-1
(3)首先阅读材料:对于函数图象上的任意两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数图象上存在点M(x,y)(x∈(x1,x2)),使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当x=时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年云南省、楚雄一中、昆明三中高三第二次联考理科数学 题型:选择题

设函数 其中表示不超过的最大整数,如=-2,=1,=1,若直线y=与函数y=的图象恰有三个不同的交点,则的取值范围是

A.     B.     C.      D. 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高三高考最后模拟考试理数 题型:选择题

设函数其中表示不超过的最大整数,如=-2,=1,=1,若直线y=与函数y=的图象恰有三个不同的交点,则的取值范围是

A.    B.    C.     D. 

 

查看答案和解析>>

同步练习册答案