精英家教网 > 高中数学 > 题目详情
(2012•芜湖二模)某长方体的对角线长是4,有一条棱长为1,那么该长方体的最大体积为
15
2
15
2
分析:设该长方体的另外两条棱长分别为a、b,由长方体的对角线与棱长的关系得a2+b2+12=16,即a2+b2=15,再利用基本不等式的性质即可求出该长方体的最大值.
解答:解:设该长方体的另外两条棱长分别为a、b,则a2+b2+12=16,
∴a2+b2=15,∴v=ab•1≤
a2+b2
2
=
15
2
,当且仅当a=b=
30
2
时取等号.
∴该长方体的最大体积为
15
2

故答案为
15
2
点评:会利用长方体的三条棱长表示对角线出及利用基本不等式的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•芜湖二模)直线
x=1+
4
5
t
y=-1-
3
5
t
(t为参数)被曲线ρ=
2
cos(θ+
π
4
)
所截的弦长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有5种颜色可供使用,则不同的染色方法总数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)已知复数z=x+yi(x,y∈R),且有
x
1-i
=1+yi
.
z
是z的共轭复数,那么
1
.
z
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)某省对省内养殖场“瘦肉精”使用情况进行检查,在全省的养殖场随机抽取M个养殖场的猪作为样本,得到M个养殖场“瘦肉精”检测阳性猪的头数,根据此数据作出了频率分布表和频率分布直方图如下:
分组 频数 频率
[10,15) 10 0.25
[15,20) 24 n
[20,25) m P
[25,30) 2 0.05
合计 M 1
(1)求出表中M,P以及图中a的值.
(2)若该省有这样规模的养殖场240个,试估计该省“瘦肉精”检测呈阳性的猪的头数在区间[10,15)内的养殖场的个数.
(3)在所取样本中,出现“瘦肉精”呈阳性猪的头数不少于20头的养殖场中任选2个,求至多一个养殖场出现“瘦肉精”阳性猪头数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)抛物线y=8x2的焦点坐标为
(0,
1
32
)
(0,
1
32
)

查看答案和解析>>

同步练习册答案