精英家教网 > 高中数学 > 题目详情
18.如图,在四棱锥O-ABCD中,底面ABCD是四边长为$\sqrt{2}$的菱形,$∠ABC=\frac{π}{4},OA⊥$底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:平面OAC⊥平面OBD;
(2)求平面BMN与平面OAD所成锐二面角的大小.

分析 (1)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,利用向量法能证明平面OAC⊥平面OBD.
(2)求出平面BMN的法向量和平面OAD的法向量,利用向量法能求出平面BMN与平面OAD所成锐二面角.

解答 证明:(1)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,
则O(0,0,2),A(0,0,0),C(1,$\sqrt{2}-1$,0),B($\sqrt{2}$,0,0),D(1,-1,0),
$\overrightarrow{AO}$=(0,0,2),$\overrightarrow{AC}$=(1,$\sqrt{2}-1$,0),$\overrightarrow{OB}$=($\sqrt{2},0,-2$),$\overrightarrow{OD}$=(1,-1,-2),
设平面OAC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AO}=2z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=x+(\sqrt{2}-1)y=0}\end{array}\right.$,取x=$\sqrt{2}-1$,得$\overrightarrow{n}$=($\sqrt{2}-1$,-1,0),
设平面OBD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{OB}=\sqrt{2}a-2c=0}\\{\overrightarrow{m}•\overrightarrow{OD}=a-b-2c=0}\end{array}\right.$,取c=1,得$\overrightarrow{m}$=($\sqrt{2}$,$\sqrt{2}-2$,1),
∵$\overrightarrow{m}•\overrightarrow{n}$=$\sqrt{2}(\sqrt{2}-1)+(\sqrt{2}-2)•(-1)+1•0$=0,
∴平面OAC⊥平面OBD.
解:(2)M(0,0,1),N($\frac{1+\sqrt{2}}{2}$,$\frac{\sqrt{2}-1}{2}$,0),
$\overrightarrow{BM}$=($-\sqrt{2},0$,1),$\overrightarrow{BN}$=($\frac{1-\sqrt{2}}{2}$,$\frac{\sqrt{2}-1}{2}$,0),$\overrightarrow{AD}$=(1,-1,0),
设平面BMN的法向量$\overrightarrow{p}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{BM}=-\sqrt{2}{x}_{1}+{z}_{1}=0}\\{\overrightarrow{p}•\overrightarrow{BN}=\frac{1-\sqrt{2}}{2}{x}_{1}+\frac{\sqrt{2}-1}{2}{y}_{1}=0}\end{array}\right.$,取x=$\sqrt{2}$,得$\overrightarrow{p}$=($\sqrt{2},\sqrt{2}$,2),
设平面OAD的法向量$\overrightarrow{q}$=(x2,y2,z2),
则$\left\{\begin{array}{l}{\overrightarrow{q}•\overrightarrow{AO}=2{z}_{2}=0}\\{\overrightarrow{q}•\overrightarrow{AD}={x}_{2}-{y}_{2}=0}\end{array}\right.$,取x2=1,得$\overrightarrow{q}$=(1,1,0),
设平面BMN与平面OAD所成锐二面角为θ,
则cosθ=$\frac{|\overrightarrow{p}•\overrightarrow{q}|}{|\overrightarrow{p}|•|\overrightarrow{q}|}$=$\frac{2\sqrt{2}}{\sqrt{8}•\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,$θ=\frac{π}{4}$.
∴平面BMN与平面OAD所成锐二面角为$\frac{π}{4}$.

点评 本题考查面面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点分别为(-1,0),(1,0),且经过点(1,$\frac{3}{2}$).
(1)求椭圆的标准方程;
(2)设经过点(1,0)且不垂直于x轴的直线l与椭圆交于不同的两点P,Q.求证:在x轴上存在定点N,使得直线NP,NQ的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是(  )
A.1mmB.2mmmC.3mmD.4mm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)=ax2+bx+1满足f(-1)=0,且x∈R时,f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)-2kx,k∈R.
①若g(x)在x∈[-2,2]时是单调函数,求实数k的取值范围;
②若g(x)在x∈[-2,2]上的最小值g(x)min=-15,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为R,且x3f(x)+x3f(-x)=0,若对任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,则不等式x3f(x)-8f(2)<x2-4的解集为(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-4,4)D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某研究机构对高二文科学生的记忆力x和判断力y进行统计分析,得下表数据
X681012
Y2356
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出f'(x)=3x2-6x关于f'(x)=0的线性回归方程x1=0;
(3)试根据(2)求出的线性回归方程,预测记忆力为14的同学的判断力.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={x|1≤x≤6,x∈Z},集合A={1,3,4},集合B={2,4},则(∁UA)∪B=(  )
A.{1,2,4,6}B.{2,3,4,6}C.{2,4,5,6}D.{2,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$.
(1)化简f(α),并求f(-$\frac{67π}{6}$);
(2)若f(α )=$\frac{2}{5}$,求cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=2${\;}^{\frac{1}{3}}$,b=log3$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

同步练习册答案