精英家教网 > 高中数学 > 题目详情

【题目】“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.201911日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.

新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:

旧个税税率表(个税起征点3500)

新个税税率表(个税起征点5000)

缴税级数

每月应纳税所得额(含税)=收入-个税起征点

税率(%)

每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除

税率(%)

1

不超过1500元部分

3

不超过3000元部分

3

2

超过1500元至4500元部分

10

超过3000元至12000元部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元至55000元部分

30

超过35000元至55000元部分

30

···

···

···

···

···

随机抽取某市1000名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000/,子女教育每孩1000/,赡养老人2000/月等。

假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:

1)设该市该收入层级的从业者2019年月缴个税为,的分布列和期望;

2)根据新旧个税方案,估计从20191月开始,经过多少个月,该市该收入层级的从业者各月少缴交的个税之和就超过2019年的月收入?

【答案】1)见解析(2)经过12个月,该收入层级的从业者少缴交的个税的总和就超过2019年的月收入

【解析】

1)求出4种人群的每月应缴个税额,得出分布列和数学期望;

2)计算两种政策下的每月应缴个税额度差即可得出结论.

1)既不符合子女教育扣除也不符合赡养老人扣除的人群每月应纳税所得额为

月缴个税

只符合子女教育扣除但不符合赡养老人扣除的人群每月应纳税所得额为

月缴个税

只符合赡养老人扣除但不符合子女教育扣除的人群每月应纳税所得额为

月缴个税

既符合子女教育扣除又符合赡养老人扣除的人群每月应纳税所得额为

月缴个税

所以的可能值为2190199017901590,

依题意,上述四类人群的人数之比是2:1:1:1

所以

.,

所以的分布列为

2190

1990

1790

1590

所以..

2)因为在旧政策下该收入层级的从业者2019年每月应纳税所得额为

其月缴个税为,

因为在新政策下该收入层级的从业者2019年月缴个税为1950

所以该收入层级的从业者每月少缴交的个税为.,

设经过个月,该收入层级的从业者少缴交的个税的总和就超过24000

,因为,所以,

所以经过12个月,该收入层级的从业者少缴交的个税的总和就超过2019年的月收入.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形为菱形,且分别为棱的中点.

(1)求证:平面

(2)若平面,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADABABDCADDCAP2AB1,点E为棱PC的中点.

(1)证明:BEDC

(2)求直线BE与平面PBD所成角的正弦值;

(3)F为棱PC上一点,满足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;

(2)求曲线过点的切线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查民众对国家实行新农村建设政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持新农村建设人数如下表:

年龄

频数

10

20

30

20

10

10

支持新农村建设

3

11

26

12

6

2

1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对新农村建设政策的支持度有差异;

年龄低于50岁的人数

年龄不低于50岁的人数

合计

支持

不支持

合计

2)现从年龄在内的5名被调查人中任选两人去参加座谈会,求选出两人中恰有一人支持新农村建设的概率.

参考数据:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

7

8

9

10

11

12

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

(1)根据7至11月份的数据,求出关于的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

 参考公式:回归直线方程,其中,参考数据:

查看答案和解析>>

同步练习册答案