精英家教网 > 高中数学 > 题目详情

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

【答案】(1)

(2)派甲参加比较合适.

【解析】试题分析:(1)根据平均数以及中位数计算公式分别求得平均数和中位数;(2)由于两人平均数一样,所以比较两人方差,确定两人稳定性,根据方差公式可得甲的方差比乙小,即甲稳定,所以选甲

试题解析:解:(1)由茎叶图可知甲、乙两人成绩的平均数为

甲、乙两人成绩的中位数为

(2)派甲参加比较合适,理由如下:

∴两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

第30届伦敦

第29届北京

第28届雅典

第27届悉尼

第26届亚特兰大

中国

38

51

32

28

16

俄罗斯

24

23

27

32

26

(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);

(2)如表是近五届奥运会中国代表团获得的金牌数之和(从第26届算起,不包括之前已获得的金牌数)随时间变化的数据:

时间(届)

26

27

28

29

30

金牌数之和(枚)

16

44

76

127

165

作出散点图如图:

由图可以看出,金牌数之和与时间之间存在线性相关关系,请求出关于的线性回归方程,并预测到第32届奥运会时中国代表团获得的金牌数之和为多少?

附:对于一组数据 ,…, ,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:

玩具名称

工时(分钟)

5

7

4

利润(元)

5

6

3

(Ⅰ)用每天生产种玩具个数种玩具表示每天的利润(元);

(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=

(I)若P是椭圆C上任意一点,求的取值范围;

(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线方程为.

(1)求该双曲线的实轴长、虚轴长、离心率;

(2)若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体是由三棱柱截去一部分后而成, 的中点.

(Ⅰ)若上,且的中点,求证:直线//平面

(Ⅱ) 若平面 , 求点到面的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解方程ln(2x+1)=ln(x2﹣2);
求函数f(x)=( 2x+2×( x(x≤﹣1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),定义.

(1)求函数的极值

(2)若,且存在使,求实数的取值范围;

(3)若,试讨论函数)的零点个数.

查看答案和解析>>

同步练习册答案