精英家教网 > 高中数学 > 题目详情
已知空间三点A(1,3,2),B(1,2,1),C(-1,2,3),则下列向量中是平面ABC的法向量的为(  )
A.(-1,-2,5)B.(1,3,2)C.(1,1,1)D.(-1,1,-1)
∵A(1,3,2),B(1,2,1),C(-1,2,3),
AB
=(0,-1,-1),
AC
=(-2,-1,1)
设向量
n
=(x,y,z)是平面ABC的一个法向量
n
AB
=-y-z=0
n
AC
=-2x-y+z=0
,取y=1,得x=-1,z=-1
n
=(-1,1,-1)是平面ABC的一个法向量
因此可得:只有D选项的向量是平面ABC的法向量
故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.

求证:(1)直线PA∥平面DFE;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
如图2,在四面体中,
(1)设的中点,证明:在上存在一点,使,并计算的值;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,是正三角形,D的中点,二面角为120,.取AC的中点O为坐标原点建立空间直角坐标系,如图所示,BDz轴于点E.
(I)求BDP三点的坐标;
(II)求异面直线ABPC所成的角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·南通调研]设α,β是空间内两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用序号表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面内的三点,设平面的法向量,则________________。

查看答案和解析>>

同步练习册答案