精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中-A BC中,AB  AC, AB=AC=2,=4,点D是BC的中点.
(1)求异面直线所成角的余弦值;
(2)求平面所成二面角的正弦值.

解析试题分析:(1)以为单位正交基底建立空间直角坐标系,利用向量法能求出异面直线所成角的余弦值;(2)分别求出平面的法向量与的法向量,利用法向量能求出平面所成二面角的余弦值,再由三角函数知识能求出平面所成二面角的正弦值.
试题解析:(1)以为单位正交基底建立空间直角坐标系,

,,,,,
,

异面直线所成角的余弦值为
(2) 是平面的的一个法向量,设平面的法向量为,

,取,得,
所以平面的法向量为
设平面所成二面角为 .
, 得
所以平面所成二面角的正弦值为
考点:与二面角有关的立体几何综合题;异面直线及其所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示的几何体中,四边形ABCD是等腰梯形,AD//CD, ,FC 平面ABCD, AE BD,CB =CD=-CF.
 
(Ⅰ)求证:平面ABCD 平面AED;
(Ⅱ)直线AF与面BDF所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,平面平面,且四边形为矩形,四边形为直角梯形,
(1)求证平面;(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2.
(1)证明:平面BGM⊥平面BFC;
(2)求三棱锥F-BMC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,平面依次是的中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,为矩形,平面平面.
求证:

为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°

(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点P(m,n)在直线上移动,其中a,b,c为某一直角三角形的三条边长,c为斜边,则m2+n2的最小值是                   .

查看答案和解析>>

同步练习册答案