精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x3+ax2+bx,(x<1)
-
3
2
clnx,(x≥1)
, 
的图象在点(-1,f(-1))处的切线方程为5x+y+3=0.
(I)求实数a,b的值及函数f(x)在区间[-1,2]上的最大值;
(Ⅱ)曲线y=f(x)上存在两点M、N,使得△MON是以坐标原点O为直角顶点的直角三角形,且斜边MN的中点在y轴上,求实数c的取值范围.
考点:利用导数研究曲线上某点切线方程,分段函数的应用
专题:分类讨论,导数的概念及应用,导数的综合应用
分析:(I)求出当x<1时的f(x)的导数,由切线方程可得斜率和切点,即有f(-1)=2,且f′(-1)=-5,解方程即可得到a,b;再由导数,求得单调区间,对c讨论,即可得到最大值;
(Ⅱ)根据条件可得,M,N的横坐标互为相反数,不妨设M(-t,t3+t2),N(t,f(t)),(t>0).讨论t,运用向量垂直的条件:数量积为0,即可求得c的范围.
解答: 解:(I)当x<1时,f(x)的导数f′(x)=-3x2+2ax+b,
由f(x)在点(-1,f(-1))处的切线方程为5x+y+3=0,
可得f(-1)=2,且f′(-1)=-5,即有1+a-b=2,且-3-2a+b=-5,
解得a=1,b=0;
当x<1时,f(x)=-x3+x2
令f′(x)=-3x2+2x=0可得x=0或x=
2
3

f(x)在(-1,0)和(
2
3
,1)上单调递减,在(0,
2
3
)上单调递减,
此时f(x)在[-1,1)上的最大值为f(-1)=2;
当c<0时,f(x)=-
3
2
clnx
在[1,2]上单调递增,且f(2)=-
3
2
cln2

-
3
2
cln2=2
,则c=-
4
3ln2

所以当c<-
4
3ln2
时,f(x)在[-1,2]上的最大值为f(2)=-
3
2
cln2

-
4
3ln2
≤c<0
时,f(x)在[-1,2]上的最大值为f(-1)=2.
当c≥0时,f(x)=-
3
2
clnx
在[1,2]上单调递减,且f(1)=0,
所以f(x)在[-1,2]上的最大值为f(-1)=2.
综上可知,当c≥-
4
3ln2
时,f(x)在[-1,2]上的最大值为2;
c≤-
4
3ln2
时,f(x)在[-1,2]上的最大值为f(2)=-
3
2
cln2

(Ⅱ)函数f(x)=
-x3+ax2+bx,(x<1)
-
3
2
clnx,(x≥1)
, 

根据条件可得,M,N的横坐标互为相反数,
不妨设M(-t,t3+t2),N(t,f(t)),(t>0).
若t<1,则f(t)=-t3+t2
由∠MON是直角得,
OM
ON
=0,即-t2+(t3+t2)(-t3+t2)=0,
即t4-t2+1=0.此时无解;
若t≥1,则f(t)=-
3
2
clnt

由于MN的中点在y轴上,且∠MON=90°,所以N点不可能在x轴上,即t≠0.
同理有
OM
ON
=0,即-t2+(t3+t2)(-
3
2
clnt)=0
c=-
2
3
1
(t+1)lnt

由于函数g(t)=-
2
3
1
(t+1)lnt
(t>1)的值域是(-∞,0),
实数c的取值范围是(-∞,0)即为所求.
点评:本题考查导数的运用:求切线方程和单调区间及极值、最值,考查分类讨论的思想方法,运用向量垂直的条件即数量积为0是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正三棱柱ABC-A1B1C1中,点D是BC的中点,BC=2,BB1=
2

(1)求证:A1C∥平面AB1D;
(2)求证:BC1⊥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn=(-1)n+1,求数列{an}.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年9月4日国务院发布了《国务院关于深化考试招生制度改革的实施意见》,其中指出:文理将不分科;总成绩由同一高考的语文、数学、外语3个科目成绩和高中学业水平考试成绩组成;外语科目提供两次考试机会;计入总成绩的高中学业水平考试科目,由考生根据高考高校要求和自身特长,在其余六科中自主选择.某社区N名居民接受了当地电视台对《意见》看法的采访,他们的年龄在25岁至50岁之间,按年龄分5组:[25,30),[30,35),[35,40),[40,45),[45,50],得到的频率分布直方图如图所示,下表是年龄的频数分布表:
区间[25,30)[30,35)[35,40)[40,45)[45,50]
人数25ab

(1)求正整数a,b,N的值;
(2)现要从年龄较小的前3组中采用分层抽样的方法选取6人,则年龄在第1,2,3组的人数分别是多少?再从这6人中随机选取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}中,a1=1,
an+1
an
=
1
2
,则数列{an}的通项公式是(  )
A、an=2n
B、an=
1
2n
C、an=
1
2n-1
D、an=
1
n2

查看答案和解析>>

科目:高中数学 来源: 题型:

y=x2-2x+2,在[a,b]上的值域为[1,2]
(1)写出实数对(a,b)组成的集合
(2)画出此集合在直角坐标系中对应的图形;
(3)此图形可能是某个函数的图象吗?若可能,求出解析式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+by=0与双曲线
x2
a2
-
y2
b2
=1(0<a<b)交于A,B两点,若A(x1,y1),B(x2,y2)满足|x1-x2|=3
3
,且|AB|=6,则双曲线的离心率为(  )
A、
3
B、3
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|2x-1|+ax-5,如果函数y=f(x)恰有两个不同的零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图后,输出的结果是(  )
A、0
B、1
C、1+
2
2
D、1+
2

查看答案和解析>>

同步练习册答案