精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求证:当x>1时,f(x)>0成立;

(2)若t> ,判断函数g(x)=x[f(x)+t+1]的零点的个数.

【答案】(1)见解析(2)1

【解析】试题分析:(1)时,对求导得增区间, 得减区间进而求出函数的最小值值即可证明;(2)t>求得函数g(x)=x[f(x)+t+1]的导函数,研究其单调性,根据零点定理再利用导数即可判定零点的个数.

试题解析:解:(1)t=1时,f(x)=x﹣﹣2lnx,x>0

∴f′(x)=1+==≥0,

∴f(x)在(1,+∞)上单调递增,

∴f(x)>f(1)=1﹣1﹣0=0,

∴x>1,f(x)>0成立,

(2)当x(0,+∞),g(x)=tx2﹣(t+1)xlnx+(t+1)x﹣1

∴g′(x)=2tx﹣(t+1)lnx,

设m(x)=2tx﹣(t+1)lnx, ∴m′(x)=2t﹣=

令m′(x)=0,得x=

当0<x<时,m'(x)<0;当时x>,m'(x)>0.

∴g'(x)在(0,)上单调递减,在(,+∞)上单调递增.

∴g'(x)的最小值为g′()=(t+1)(1﹣ln),

∵t>,∴ =++<e.

∴g'(x)的最小值g′()=(t+1)(1﹣ln)>0,

从而,g(x)在区间(0,+∞)上单调递增.

又g(1)=2t>0,又g()=+(6+2lnt)﹣1,

设h(t)=e3t﹣(2lnt+6).

则h′(t)=e3

令h'(t)=0得t=.由h'(t)<0,得0<t<

由h'(t)>0,得t>

∴h(t)在(0,)上单调递减,在(,+∞)上单调递增.

∴h(t)min=h()=2﹣2ln2>0.

∴h(t)>0恒成立.∴e3t>2lnt+6,.

∴g()<+﹣1=++﹣1<++﹣1<0.

∴当t>时,函数g(x)恰有1个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某水果店购进某种水果的成本为,经过市场调研发现,这种水果在未来30天的销售单价与时间之间的函数关系式为,销售量与时间的函数关系式为

该水果店哪一天的销售利润最大?最大利润是多少?

为响应政府“精准扶贫”号召,该店决定每销售水果就捐赠元给精准扶贫对象.欲使捐赠后不亏损,且利润随时间 的增大而增大,求捐赠额的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足),且.

(1)求的解析式;

(2)若关于的方程在区间上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).

(3)函数,试问是否存在实数,使得对任意 都有成立,若存在,求出实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券,赛后,中国男篮主力易建联荣膺本届亚锦赛(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.

注:(1)表中表示出手次命中次;

(2)(真实得分率)是衡量球员进攻的效率,其计算公式为:

(1)从上述9场比赛中随机选择一场,求易建联在该场比赛中超过50%的概率;

(2)从上述9场比赛中随机选择一场,求易建联在该场比赛中至少有一场超过60%的概率;

(3)用来表示易建联某场的得分,用来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至多击中1次的概率:先由计算器产生09之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:

5 727 0 293 7 140 9 857 0 347

4 373 8 636 9 647 1 417 4 698

0 371 6 233 2 616 8 045 6 011

3 661 9 597 7 424 6 710 4 281

据此估计,该射击运动员射击4次至多击中1次的概率为(  )

A. 0.95 B. 0.1

C. 0.15 D. 0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+3x2-9x

(I)求fx)的单调区间;

(Ⅱ)若函数fx)在区间[-4,c]上的最小值为-5,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出09之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(  )

A. 0.35 B. 0.25

C. 0,20 D. 0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个学生在一次竞赛中要回答道题是这样产生的道物理题中随机抽取道化学题中随机抽取道生物题中随机抽取.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为化学题的编号为生物题的编号为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.

(1)试求a的值;

(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案