精英家教网 > 高中数学 > 题目详情

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.


优秀

非优秀

合计

甲班

10



乙班


30


合计



110

1)请完成上面的列联表;

2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

【答案】1


优秀

非优秀

合计

甲班

10

50

60

乙班

20

30

50

合计

30

80

110

2)按99.9%的可靠性要求,不能认为成绩与班级有关系

3

【解析】

试题

思路此类问题(1)(2)直接套用公式,经过计算卡方,与数表对比,作出结论。(3)是典型的古典概型概率的计算问题,确定两个事件数,确定其比值。

解:(14


优秀

非优秀

合计

甲班

10

50

60

乙班

20

30

50

合计

30

80

110

2)根据列联表中的数据,得到K2= ≈7.48710.828.因此按99.9%

可靠性要求,不能认为成绩与班级有关系” 8

3)设抽到910为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(xy).所有的基本事件有:(11)、(12)、(13)、、(66)共36个.事件A包含的基本事件有:(36)、(45)、(54)、(63)、(55)、(46)(64)共7个.所以P(A)=,即抽到9号或10号的概率为12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】研究发现,北京 PM 2.5 的重要来源有土壤尘、燃煤、生物质燃烧、汽车尾气与垃圾焚烧、工业污染和二次无机气溶胶,其中燃煤的平均贡献占比约为 18%.为实现“节能减排”,还人民“碧水蓝天”,北京市推行“煤改电”工程,采用空气源热泵作为冬天供暖.进入冬季以来,该市居民用电量逐渐增加,为保证居民取暖,市供电部门对该市 100 户居民冬季(按 120 天计算)取暖用电量(单位:度)进行统计分析,得到居民冬季取暖用电量的频率分布直方图如图所示.

(1)求频率分布直方图中的值;

(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;

(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图一是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1勾股树,重复图二的作法,得到图三为第2勾股树,以此类推,已知最大的正方形面积为1,则第勾股树所有正方形的个数与面积的和分别为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,直线的参数方程为为参数, 为直线的倾斜角,且),以原点为极点, 轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)若直线经过圆的圆心,求直线的倾斜角;

(2)若直线与圆交于 两点,且,点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,ABCD是正方形,BF平面ABCDDE平面ABCDBF=DE,点M为棱AE的中点.

1)求证:平面BMD平面EFC

2)若AB=1BF=2,求三棱锥A-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名技术人员,将他们随机分成两组,每组20人,第一组技术人员用第一种生产方式,第二组技术人员用第二种生产方式.根据他们完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)求40名技术人员完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的人数填入下面的列联表:

超过

不超过

合计

第一种生产方式

第二种生产方式

合计

(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

1.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为依赖函数

(1) 判断函数g(x)=2x是否为依赖函数,并说明理由;

(2) 若函数f(x)=(x–1)2在定义域[mn](m>1)上为依赖函数,求实数mn乘积mn的取值范围;

(3) 已知函数f(x)=(x–a)2 (a<)在定义域[4]上为依赖函数.若存在实数x[4],使得对任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求实数s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数具备以下两个条件:(1)至少有一条对称轴或一个对称中心;(2)至少有两个零点,则称这样的函数为“多元素”函数,下列函数中为“多元素”函数的是_______.

;②;③;④.

查看答案和解析>>

同步练习册答案