【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)
优秀 | 非优秀 | 合计 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 80 | 110 |
(2)按99.9%的可靠性要求,不能认为“成绩与班级有关系”
(3).
【解析】
试题
思路此类问题(1)(2)直接套用公式,经过计算“卡方”,与数表对比,作出结论。(3)是典型的古典概型概率的计算问题,确定两个“事件”数,确定其比值。
解:(1) 4分
优秀 | 非优秀 | 合计 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 80 | 110 |
(2)根据列联表中的数据,得到K2= ≈7.487<10.828.因此按99.9%的
可靠性要求,不能认为“成绩与班级有关系” 8分
(3)设“抽到9或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个.所以P(A)=,即抽到9号或10号的概率为. 12分
科目:高中数学 来源: 题型:
【题目】研究发现,北京 PM 2.5 的重要来源有土壤尘、燃煤、生物质燃烧、汽车尾气与垃圾焚烧、工业污染和二次无机气溶胶,其中燃煤的平均贡献占比约为 18%.为实现“节能减排”,还人民“碧水蓝天”,北京市推行“煤改电”工程,采用空气源热泵作为冬天供暖.进入冬季以来,该市居民用电量逐渐增加,为保证居民取暖,市供电部门对该市 100 户居民冬季(按 120 天计算)取暖用电量(单位:度)进行统计分析,得到居民冬季取暖用电量的频率分布直方图如图所示.
(1)求频率分布直方图中的值;
(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;
(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,直线的参数方程为(为参数, 为直线的倾斜角,且),以原点为极点, 轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)若直线经过圆的圆心,求直线的倾斜角;
(2)若直线与圆交于, 两点,且,点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,点M为棱AE的中点.
(1)求证:平面BMD∥平面EFC;
(2)若AB=1,BF=2,求三棱锥A-CEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名技术人员,将他们随机分成两组,每组20人,第一组技术人员用第一种生产方式,第二组技术人员用第二种生产方式.根据他们完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)求40名技术人员完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的人数填入下面的列联表:
超过 | 不超过 | 合计 | |
第一种生产方式 | |||
第二种生产方式 | |||
合计 |
(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 1.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.
(1) 判断函数g(x)=2x是否为“依赖函数”,并说明理由;
(2) 若函数f(x)=(x–1)2在定义域[m,n](m>1)上为“依赖函数”,求实数m、n乘积mn的取值范围;
(3) 已知函数f(x)=(x–a)2 (a<)在定义域[,4]上为“依赖函数”.若存在实数x[,4],使得对任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求实数s的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数具备以下两个条件:(1)至少有一条对称轴或一个对称中心;(2)至少有两个零点,则称这样的函数为“多元素”函数,下列函数中为“多元素”函数的是_______.
①;②;③;④.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com