精英家教网 > 高中数学 > 题目详情
设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0.
②|f(
10
)|<|f(
π
5
)|.
③f(x)既不是奇函数也不是偶函数.
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z).
⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.
以上结论正确的是
 
写出正确结论的编号).
分析:先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到|f(
π
6
)|
是三角函数的最大值,得到x=
π
6
是三角函数的对称轴,将其代入整体角令整体角等于kπ+
π
2
求出辅助角θ,再通过整体处理的思想研究函数的性质.
解答:解:∵f(x)=asin2x+bcos2x=
a2+b2
sin(2x+θ)

f(x)≤|f(
π
6
)|

π
6
+θ=kπ+
π
2

θ=kπ+
π
6

f(x)═
a2+b2
sin(2x+kπ+
π
6
)
=±
a2+b2
sin(2x+
π
6
)

对于①f(
11π
12
)═±
a2+b2
sin(2×
11π
12
+
π
6
)
=0,故①对
对于②,|f(
10
)|=|f(
π
5
)|
,故②错
对于③,f(x)不是奇函数也不是偶函数
对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对
对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|
a2+b2
,此时平方得b2>a2+b2这不可能,矛盾,故∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错
故答案为①③
点评:本题考查三角函数的对称轴过三角函数的最值点、考查研究三角函数的性质常用整体处理的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=Asin(ωx+φ)(A>0,ω>0)的图象关于直线x=
π3
对称,它的最小正周期是π,则f(x)图象上的一个对称中心是
 
(写出一个即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

13、设f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β是常数),且f(2009)=5,则f(2010)=
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a、b、α、β∈R且ab≠0,若f(2009)=5.则f(2010)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β)+5,且f(2009)=2,则f(2010)=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β为非零常数.若f(2012)=-1,则f(2013)=
 

查看答案和解析>>

同步练习册答案