精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x-2于M、N两点,求|MN|的最小值.
(I)由题意可设抛物线C的方程为x2=2py(p>0)则
p
2
=1,解得p=2,故抛物线C的方程为x2=4y
(II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1
y=kx+1
x2=4y
消去y,整理得x2-4kx-4=0
所以x1+x2=4k,x1x2=-4,从而有|x1-x2|=
(x1+x2)2-4x1x2
=4
k2+1

y=
y1
x1
x
y=x-2
解得点M的横坐标为xM=
2x1
x1-y1
=
2x1
x1-
x12
4
=
8
4-x1

同理可得点N的横坐标为xN=
8
4-x2

所以|MN|=
2
|xM-xN|=
2
|
8
4-x1
-
8
4-x2
|=8
2
|
x1-x2
x1x2-4(x1+x2)+16
|=
8
2
k2+1
|4k-3|

令4k-3=t,t不为0,则k=
t+3
4

当t>0时,|MN|=2
2
25
t2
+
6
t
+1
>2
2

当t<0时,|MN|=2
2
25
t2
+
6
t
+1
=2
2
(
5
t
+
3
5
)2+
16
25
8
2
5

综上所述,当t=-
25
3
时,|MN|的最小值是
8
2
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知F是抛物线y2=4x上的焦点,P是抛物线上的一个动点,若动点M满足
FP
=2
FM
,则M的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l:y=kx+1与双曲线C:3x2-y2=1相交于不同的A,B两点.
(1)求AB的长度;
(2)是否存在实数k,使得以线段AB为直径的圆经过坐标原点?若存在,求出k的值,若不存在,写出理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线C:x2=2py(p>0)的焦点为F,O为坐标原点;当抛物线上点N的纵坐标为1时,|NF|=2,已知直线l经过抛物线C的焦点F,且与抛物线C交于A,B两点
(1)求抛物线C的方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(x0,y0)是椭圆C:
x2
5
+y2=1
上的一点.F1、F2是椭圆C的左右焦点.
(1)若∠F1PF2是钝角,求点P横坐标x0的取值范围;
(2)求代数式
y20
+2x0
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率e=
3
2
,短轴长为2,点A(x1,y1),B(x2,y2)是椭圆上的两点,
m
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
,且
m
n
=0

(1)求椭圆方程;
(2)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率;
(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,B(-2,0),C(2,0),△ABC的周长为12,动点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P、Q为E上两点,
OP
OQ
=0
,过原点O作直线PQ的垂线,垂足为M,证明|OM|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,点E在线段AB的延长线上.若曲线段DE(含两端点)为某曲线L上的一部分,且曲线L上任一点到A、B两点的距离之和都相等.
(1)建立恰当的直角坐标系,求曲线L的方程;
(2)根据曲线L的方程写出曲线段DE(含两端点)的方程;
(3)若点M为曲线段DE(含两端点)上的任一点,试求|MC|+|MA|的最小值,并求出取得最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

同步练习册答案