精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

已知函数 (为实常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若函数在区间上无极值,求的取值范围;

(Ⅲ)已知,求证: .

 

【答案】

(I) 时递增;在时递减.

(II)的取值范围是.  

(Ⅲ)

【解析】(I)当a=1时,,然后求导利用导数大(小)于零,分别求其单调递(减)区间即可.S

(II)本小题的实质是在(0,2)上恒成立或在(0,2)上恒成立.然后根据讨论参数a的值求解即可.

(III)由(Ⅱ)知,当时,处取得最大值.

.这是解决本小题的关键点,然后再令,则再进一步变形即可,从而得到

然后再根据可利用进行放缩证明出结论.

(I)当时,,其定义域为

,并结合定义域知; 令,并结合定义域知

时递增;在时递减.

(II),

①当时,上递减,无极值;

②当时,上递增,在上递减,故处取得极大值.要使在区间上无极值,则.

综上所述,的取值范围是.   ………………………(9分)

(Ⅲ)由(Ⅱ)知,当时,处取得最大值.

.

,则,即 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案