精英家教网 > 高中数学 > 题目详情
已知圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50交于A、B两点,则公共弦AB的长是   
【答案】分析:由已知中圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50的方程,我们将两个方程相减,即可得到公共弦AB的方程,然后根据半弦长与弦心距及圆半径,构成直角三角形,满足勾股定理,易求出公共弦AB的长.
解答:解:圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50的公共弦AB的方程为:
(x-2)2+(y-1)2-10-[(x+6)2+(y+3)2-50]=0
即2x+y=0
∵圆C1:(x-2)2+(y-1)2=10的圆心(2,1)到直线2x+y=0的距离d=,半径为
∴公共弦AB的长为2
故答案为:2
点评:本题考查的知识点是圆与圆的位置关系,直线与圆的位置关系,弦长的求法,其中将两个圆方程相减,直接得到公共弦AB的方程可以简化解题过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50交于A、B两点,则AB所在的直线方程是
2x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50交于A、B两点,则公共弦AB的长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省合肥一中高二(下)第二阶段考试数学试卷(文科)(解析版) 题型:填空题

已知圆C1:(x-2)2+(y-1)2=10与圆C2:(x+6)2+(y+3)2=50交于A、B两点,则公共弦AB的长是   

查看答案和解析>>

同步练习册答案