精英家教网 > 高中数学 > 题目详情

【题目】下列命题中错误的是( )

A.若命题为真命题,命题为假命题,则命题“”为真命题

B.命题“若,则”为真命题

C.命题“若,则”的否命题为“若,则

D.命题:,,则,

【答案】C

【解析】

根据含有逻辑联结词命题真假性,判断A选项是否正确.根据原命题的逆否命题的真假性,判断B选项是否正确.根据否命题的知识判断C选项是否正确.根据特称命题的否定是全称命题的知识,判断D选项是否正确.

对于A选项,由于为假命题,所以为真命题,所以“”为真命题,故A选项正确.

对于B选项,原命题的逆否命题是“若,则”为真命题,原命题也是真命题,故B选项正确.

对于C选项,命题“若,则”的否命题为“若,则”,故C选项错误.

对于D选项,命题:,,则,,故D选项正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组,年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出20人作为2019年中国国际智博会服务的志愿者.

(1)分别求出从重庆大学、西南大学、重庆医科大学、西南政法大学抽出的志愿者人数;

(2)若“嘉宾”小组的2名志愿者只能从重庆医科大学或西南政法大学抽出,求这2人分别来自不同大学的概率(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为减轻汽车尾气对大气的污染,保卫蓝天,鼓励广大市民使用电动交通工具出行,决定为电动车(含电动自行车和电动汽车)免费提供电池检测服务.现从全市已挂牌照的电动车中随机抽取100辆委托专业机构免费为它们进行电池性能检测,电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,样本分布如图.

(1)采用分层抽样的方法从电池性能较好的电动车中随机抽取9辆,再从这9辆中随机抽取2辆,求至少有一辆为电动汽车的概率;

(2)为进一步提高市民对电动车的使用热情,市政府准备为电动车车主一次性发放补助,标准如下:①电动自行车每辆补助300元;②电动汽车每辆补助500元;③对电池需要更换的电动车每辆额外补助400元.试求抽取的100辆电动车执行此方案的预算;并利用样本估计总体,试估计市政府执行此方案的预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.MPB的中点.

1)求证:PD//平面AMC

2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R的行业标准,予以地方财政补贴.其补贴标准如下表:

出厂续驶里程R(公里)

补贴(万元/辆)

3

4

4.5

2019年底随机调查该市1000辆纯电动汽车,统计其出厂续驶里程R,得到频率分布直方图如上图所示用样本估计总体,频率估计概率,解决如下问题:

1)求该市每辆纯电动汽车2019年地方财政补贴的均值;

2)某企业统计2019年其充电站100天中各天充电车辆数,得如下的频数分布表:

辆数

天数

20

30

40

10

(同一组数据用该区间的中点值作代表)

20203月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来该企业拟将转移补贴资金用于添置新型充电设备,现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80/.该企业现有两种购置方案:

方案一:购买100台直流充电桩和900台交流充电桩;

方案二:购买200台直流充电桩和400台交流充电桩.

假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2019年的统计数据,分别估计该企业在两种方案下新设备产生的最大日利润.(日利润日收入日维护费用).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,,的中点,,平面平面.

(1)求证:平面平面;

(2)记点到平面的距离为,点到平面的距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体是正三棱柱(底面是正三角形的直棱柱)沿平面切除一部分所得,其中平面为原正三棱柱的底面,,点D的中点.

(1)求证:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

同步练习册答案