精英家教网 > 高中数学 > 题目详情

【题目】已知命题 ,命题 为假命题,则实数 的取值范围为( )
A.
B.
C.
D.

【答案】A
【解析】当命题 为真时 ;当命题 为真时 ,解得 . 为假命题,则 均为假命题,所以 解得 .故A符合题意.
所以答案是A。


【考点精析】本题主要考查了四种命题的真假关系和命题的真假判断与应用的相关知识点,需要掌握一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真;②、原命题为真,它的否命题不一定为真;③、原命题为真,它的逆否命题一定为真;两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】a、b、c是空间中互不重合的三条直线,下面给出五个命题:

①若ab,bc,则ac;②若ab,bc,则ac;

③若ab相交,bc相交,则ac相交;

④若a平面α,b平面β,则a,b一定是异面直线;

⑤若a,bc成等角,则ab.

上述命题中正确的是________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知等差数列.

(1)求数列的通项公式;

(2)记数列的前项和为,求

(3)是否存在正整数,使得仍为数列中的项,若存在,求出所有满足的正整数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[0,1]上的函数f(x)满足:
①f(0)=f(1)=0;
②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的前项和为;数列满足.

1)求数列的通项公式;

2)①试确定的值,使得数列为等差数列;

②在①结论下,若对每个正整数,在之间插入个2,得到一个新数列,设是数列的前项和,试求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义域分别是的函数一个函数.

(Ⅰ)写出函数的解析式

(Ⅱ)(Ⅰ)的条件下恒成立求实数的取值范围

(Ⅲ)时,若函数有四个零点分别为的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·上海)设z1, z2C, ,则“z1, z2中至少有一个数是虚数”是“z1-z2是虚数”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,它满足条件,数列满足.

(1)求数列的通项公式;

(2)若数列是一个单调递增数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要条件
C.命题“若x<﹣1,则x2﹣2x﹣3>0”的否定为:“若x≥﹣1,则x2﹣2x﹣3≤0”
D.已知命题 p:x∈R,x2+x﹣1<0,则p:x∈R,x2+x﹣1≥0

查看答案和解析>>

同步练习册答案