精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知圆C的方程为x2+y2-8x+15=0,直线l的方程为y=kx-2.
(1)若直线l被圆C所截得弦长为2,求直线l的方程;
(2)若直线l上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,求k的最大值.
分析:(1)设直线l被圆C所截得弦长为L,将圆的方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心C到直线l的距离d,利用垂径定理及勾股定理列出关于k的方程,求出方程的解得到k的值,即可确定出直线l的方程;
(2)将圆C的方程化为标准方程,找出圆心C坐标与半径r,由题意,直线y=kx-2上至少存在一点A(x0,kx0-2),以该点为圆心,1为半径的圆与圆C有公共点,可得出存在x0∈R,使得AC≤1+1成立,即ACmin≤2,ACmin即为点C到直线y=kx-2的距离,利用点到直线的距离公式列出关于k的不等式,求出不等式的解集即可得到k的最大值.
解答:解:(1)设直线l被圆C所截得弦长为L,
圆C的方程可化为(x-4)2+y2=1,圆心为C(4,0),半径为r=1,
设圆心C到直线l的距离为d,则d=
|4k-2|
k2+1

由垂径定理可知,直线l被圆C所截得的弦长为L=2
r2-d2

故由题意,可得2
12-(
|4k-2|
k2+1
)
2
=2,
化简得,k=
1
2

则直线l的方程为y=
1
2
x-2;
(2)∵圆C的方程可化为:(x-4)2+y2=1,
∴圆C的圆心为(4,0),半径为1.
∵由题意,直线y=kx-2上至少存在一点A(x0,kx0-2),以该点为圆心,1为半径的圆与圆C有公共点;
∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2,
∵ACmin即为点C到直线y=kx-2的距离
|4k-2|
k2+1

|4k-2|
k2+1
≤2,
解得:0≤k≤
4
3

∴k的最大值是
4
3
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,勾股定理,是一道综合性较强的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案