精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知函数其中

(I)若的值;(4分)         

(Ⅱ)在(I)的条件下,若函数的图像的相邻两条对称轴之间的距离等于

①       求函数的解析式;(4分)②求最小正实数,使得函数的图象向左平移个单位时对应的函数是偶函数.(4分)

 

【答案】

(I). (Ⅱ)最小正实数

【解析】

试题分析:(I)利用特殊角的三角函数值化简cos cosφ-sin ,sinφ=0,根据|φ|< ,直接求出φ的值;

(Ⅱ)解法一:在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求出周期,求出ω,得到函数f(x)的解析式;函数f(x)的图象向左平移m个单位所对应的函数是偶函数.推出m=  (k∈Z),可求最小正实数m.

解法二:在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于

,求出周期,求出ω,得到函数f(x)的解析式;利用g(x)是偶函数当且仅当g(-x)=g(x)对x∈R恒成立,使得函数f(x)的图象向左平移m个单位所对应的函数是偶函数.化简cos(3m+ )=0,然后再求最小正实数m.

解法一:(I)由……2分

.………………4分

(Ⅱ)①由(I)得,………………5分

依题意,.………………7分

……………………8分

②函数的图象向左平移个单位后所对应的函数为…9分

是偶函数当且仅当………………10分

,从而,最小正实数.……………………12分

解法二:(I)同解法一………………4分

(Ⅱ)由(I)得,    依题意,

,故………………8分

函数的图像向左平移个单位后所对应的函数为 

是偶函数当且仅当恒成立……………9分

亦即恒成立。

恒成立。……………………10分

……………………11分

从而,最小正实数……………………12分

考点:本试题主要考查了三角函数的字母变量的求法,三角函数的图象的平移,偶函数的性质,转化思想的应用,考查计算能力,是常考题,中档试题。

点评:解决该试题的关键是利用两角和差的公式得到第一问的值,对于第二问,要熟练运用三角函数的性质得到。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案