精英家教网 > 高中数学 > 题目详情

【题目】已知 .
(1)若函数 的图象在点 处的切线平行于直线 ,求 的值;
(2)讨论函数 在定义域上的单调性;
(3)若函数 上的最小值为 ,求 的值.

【答案】
(1)解:

由题意可知 ,故


(2)解:

时,因为 ,故 为增函数;

时,由 ;由

所以增区间为 ,减区间为

综上所述,当 时, 为增函数;当 时, 的减区间为 ,增区间为


(3)解: 由(2)可知,当 时,函数 上单调递增,

故有 ,所以 不合题意,舍去.

时, 的减区间为 ,增区间为

,则函数 上单调递减,

不合题意,舍去.

时,函数 上单调递增,

,所以 不合题意,舍去.

时,

解得

综上所述,


【解析】(1)求出原函数的导函数由已知函数 f ( x ) 的图象在点 ( 1 , f ( 1 ) ) 处的切线即为 f ′ ( 1 ) = 1 + a = 1,求出a的值。(2)对(1)中的导函数进行分析,由a的不同取值范围得到导函数的正负进而得出原函数f(x) 的增减性并得到相应的增减区间。(3)利用(2)的结论,对a分情况讨论分别求出各种情况下的函数在区间上的最小值令其等于,求解出a的值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD底面是一个棱长为2的菱形,且∠DAB=60°,各侧面和底面所成角均为60°,则此棱锥内切球体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴,并在两坐标系中取相同的长度单位,若直线l的极坐标方程是ρsin(θ+ )=2 ,且点P是曲线C: (θ为参数)上的一个动点.
(Ⅰ)将直线l的方程化为直角坐标方程;
(Ⅱ)求点P到直线l的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,已知 底面 ,且 的中点, 上,且 .

(1)求证:平面 平面
(2)求证: 平面
(3)求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形ABCD中, 是边长为2的等边三角形,AB=5.沿CE将 折起,使B至 处,且 ;然后再将 沿DE折起,使A至 处,且面 面CDE, 在面CDE的同侧.

(Ⅰ) 求证: 平面CDE;
(Ⅱ) 求平面 与平面CDE所构成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;

(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

同步练习册答案