精英家教网 > 高中数学 > 题目详情

【题目】已知是数列的前n项和,,且

(1)求数列的通项公式;

(2)对于正整数,已知成等差数列,求正整数的值;

(3)设数列n项和是,且满足:对任意的正整数n,都有等式成立.求满足等式的所有正整数n.

【答案】(1)(2)(3)13.

【解析】

试题(1)先根据和项与通项关系得项之间递推关系,再根据等比数列定义判断,最后根据等比数列通项公式求结果,(2)根据等差数列化简得,再根据正整数限制条件以及指数性质确定不定方程正整数解,(3)先根据定义求数列通项公式,再根据等差数列求和公式求,根据数列相邻项关系确定递减,最后根据单调性求正整数解.

试题解析:(1)由 ,两式作差得,即 .

,所以 ,则 ,所以数列是首项为公比为的等比数列,所以

(2)由题意,即

所以,其中

所以

,所以

(3)由 得,

所以 ,即

所以

又因为,得,所以

从而

;当;当

下面证明:对任意正整数都有

时, ,即

所以当时,递减,所以对任意正整数都有

综上可得,满足等式的正整数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】要得到函数的图象, 只需将函数的图象(

A. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

B. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

C. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

D. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视节目为选拔出现场录制嘉宾,在众多候选人中随机抽取100名选手,按选手身高分组,得到的频率分布表如图所示.

1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;

组号

分组

频数

频率

1

5

0.050

2

0.350

3

30

4

20

0.200

5

10

0.100

合计

100

1.00

2)为选拔出舞台嘉宾,决定在第345组中用分层抽样抽取6人上台,求第345组每组各抽取多少人?

3)求选手的身高平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在三棱锥P—ABC中,PC⊥底面ABCAB⊥BCDE分别是ABPB的中点.

)求证:DE∥平面PAC

)求证:AB⊥PB

)若PCBC,求二面角P—AB—C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)直接写出的零点;

2)在坐标系中,画出的示意图(注意要画在答题纸上)

3)根据图象讨论关于的方程的解的个数:

4)若方程,有四个不同的根直接写出这四个根的和;

5)若函数在区间上既有最大值又有最小值,直接写出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且对所有的实数,等式都成立,其

1)如果函数,求实数的值;

2)设函数,直接写出满足的两个函数

3)如果方程无实数解,求证:方程无实解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从原点向圆 作两条切线,切点分别为,,记切线的斜率分别为

(Ⅰ)若圆心,求两切线的方程;

(Ⅱ)若,求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

1)讨论的单调性;

2)若对任意,关于的不等式在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

同步练习册答案