精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,且上单调递增,求实数的取值范围

(2)是否存在实数,使得函数上的最小值为?若存在,求出实数的值;若不存在,请说明理由.

【答案】(1)(2)

【解析】试题分析:(1)求导,将函数的单调性转化为导函数非负恒成立进行求解;(2)先假设存在这样的实数,则时恒成立,求导,通过导函数的符号变换讨论函数的单调性,再合理构造函数进行求解.

试题解析:(1)

由已知时恒成立,即恒成立

分离参数得

因为

所以

所以正实数的取值范围为:

(2)假设存在这样的实数,则时恒成立,且可以取到等号

,即

从而这样的实数必须为正实数,当时,由上面的讨论知上递增,,此时不合题意,故这样的必须满足,此时:

的增区间为

的减区间为

整理得

,设

则上式即为,构造,则等价于

由于为增函数,为减函数,故为增函数

观察知,故等价于,与之对应的

综上符合条件的实数是存在的,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 为常数),函数为自然对数的底).

(1)讨论函数的极值点的个数;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈(﹣∞,0),2x<3x;命题q:x∈(0,),tanx>sinx,则下列命题为真命题的是(  )
A.p∧q
B.p∨(﹁q)
C.(﹁p)∧q
D.p∧(﹁q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=3,若a,b∈[﹣1,1],a+b≠0时,有>0成立.
(1)判断f(x)在[﹣1,1]上的单调性,并证明;
(2)解不等式:f(x+)<f();
(3)若当a∈[﹣1,1]时,f(x)≤m2﹣2am+3对所有的x∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x 满足
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,若f(f(a))=2,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,点A,B的坐标分别是(0,﹣3),(0,3)直线AM,BM相交于点M,且它们的斜率之积是﹣
(1)求点M的轨迹L的方程;
(2)若直线L经过点P(4,1),与轨迹L有且仅有一个公共点,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)某中学欲制定一项新的制度,学生会为此进行了问卷调查,所有参与问卷调查的人中,持有支持不支持既不支持也不反对的人数如下表所示:


支持

既不支持也不反对

不支持

高一学生

800

450

200

高二学生

100

150

300

)在所有参与问卷调查的人中,用分层抽样的方法抽取个人,已知从支持的人中抽取了45人,求的值;

)在持不支持态度的人中,用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有1人是高一学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα)(0≤α<2π), =(﹣ ).
(1)若 ,求α的值;
(2)若两个向量 + 垂直,求tanα.

查看答案和解析>>

同步练习册答案