【题目】已知椭圆:经过,且椭圆的离心率为.
(1)求椭圆的方程;
(2)设斜率存在的直线与椭圆交于两点,为坐标原点,,且与圆心为的定圆相切.直线:()与圆交于两点,.求面积的最大值.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2sin(2x+ ),将f(x)图象上每个点的横坐标缩短为原来的一半之后成为函数y=g(x),则g(x)的图象的一条对称轴方程为( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名运动员的5次测试成绩如下图所示:
甲 | 茎 | 乙 |
5 7 | 1 | 6 8 |
8 8 2 | 2 | 3 6 7 |
设s1 , s2分别表示甲、乙两名运动员测试成绩的标准差, 分别表示甲、乙两名运动员测试成绩的平均数,则有( )
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,过椭圆的上顶点和右顶点的直线与原点的距离为,
(1)求椭圆的方程;
(2)是否存在直线经过椭圆左焦点与椭圆交于,两点,使得以线段为直径的圆恰好经过坐标原点?若存在,求出直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A′B′C′D′中,AB=2 ,AD=2 ,AA′=2,
(Ⅰ)求异面直线BC′ 和AD所成的角;
(Ⅱ)求证:直线BC′∥平面ADD′A′.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱柱ABCD﹣A1B1C1D1的底面是边长为2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,设E为CD中点
(1)求证:D1E⊥平面BEC1
(2)点F在线段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成锐角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用另一种形式表示下列集合:
(1){绝对值不大于3的整数};
(2){所有被3整除的数};
(3){x|x=|x|,x∈Z且x<5};
(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com